Papers can be found in OpenReview, where they are available for archival purposes. This does not
constitute a proceedings for the symposium.
Roundoff Error in Metropolis-Hastings Accept-Reject Steps
Video
Matthew D. Hoffman
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel, Serena Lutong Wang, Clara Fannjiang, Katherine A. Heller, Yian Ma, Michael Jordan
Marginal Likelihood Gradient for Bayesian Neural Networks
Marcin B. Tomczak, Richard E. Turner
Decoupled Sparse Gaussian Processes Components: Separating Decision Making from Data Manifold Fitting
Sebastian Popescu, David J. Sharp, James H. Cole, Ben Glocker
Expressive yet Tractable Bayesian Deep Learning via Subnetwork Inference
Video
Erik Daxberger, Eric Nalisnick, James Urquhart Allingham, Javier Antoran, José Miguel Hernández-Lobato
Efficient Calculation of Adversarial Examples for Bayesian Neural Networks
Video
Sina Däubener, Joel Frank, Thorsten Holz, Asja Fischer
Gradient-Free Adversarial Attacks for Bayesian Neural Networks
Video
Matthew Yuan, Matthew R. Wicker, Luca Laurenti
Generalized Posteriors in Approximate Bayesian Computation
Video
Sebastian M. Schmon, Patrick W. Cannon, Jeremias Knoblauch
On Batch Normalisation for Approximate Bayesian Inference
Jishnu Mukhoti, Puneet K. Dokania, Philip Torr, Yarin Gal
Transforming Worlds: Automated Involutive MCMC for Open-Universe Probabilistic Models
Video
George Matheos, Alexander K. Lew, Matin Ghavamizadeh, Stuart Russell, Marco Cusumano-Towner, Vikash Mansinghka
Preconditioned training of normalizing flows for variational inference in inverse problems
Video
Ali Siahkoohi, Gabrio Rizzuti, Mathias Louboutin, Philipp Witte, Felix Herrmann
Rethinking Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner, Zonghao Chen, Yarin Gal
Adaptive Strategy for Resetting a Non-stationary Markov Chain during Learning via Joint Stochastic Approximation
Video
Hyunsu Kim, Juho Lee, Hongseok Yang
Nested Variational Inference
Video
Heiko Zimmermann, Hao Wu, Babak Esmaeili, Sam Stites, Jan-Willem van de Meent
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Video
Tomas Geffner, Justin Domke
The Gaussian Process Latent Autoregressive Model
Video
Rui Xia, Richard E. Turner, Wessel Bruinsma, William Tebbutt
Generative Video Compression as Hierarchical Variational Inference
Video
Ruihan Yang, Yibo Yang, Joseph Marino, Stephan Mandt
Learning Discrete State Abstractions With Deep Variational Inference
Video
Ondrej Biza, Robert Platt, Jan-Willem van de Meent, Lawson L. S. Wong
Correlated Weights in Infinite Limits of Deep Convolutional Neural Networks
Video
Adrià Garriga-Alonso, Mark van der Wilk
VIB is Half Bayes
Video
Alexander A. Alemi, Warren R. Morningstar, Ben Poole, Ian Fischer, Joshua V. Dillon
Coupled Gradient Estimators for Discrete Latent Variables
Video
Zhe Dong, Andriy Mnih, George Tucker
Approximating the clusters' prior distribution in Bayesian nonparametric models
Video
Daria Bystrova, Julyan Arbel, Guillaume Kon Kam King, François Deslandes
Gaussian Process Latent Variable Flows for Massively Missing Data
Video
Vidhi Lalchand, Aditya Ravuri, Neil D. Lawrence
Distilling Ensembles Improves Uncertainty Estimates
Video
Zelda E. Mariet, Rodolphe Jenatton, Florian Wenzel, Dustin Tran
Evidence Estimation by Kullback-Leibler Integration for Flow-Based Methods
Video
Nikolai Zaki, Théo Galy-Fajou, Manfred Opper
Neural Networks as Inter-Domain Inducing Points
Video
Shengyang Sun, Jiaxin Shi, Roger B. Grosse
Optimal Transport Couplings of Gibbs Samplers on Partitions for Unbiased Estimation
Video
Brian Trippe, Tin D. Nguyen, Tamara Broderick
Exact Langevin Dynamics with Stochastic Gradients
Video
Adrià Garriga-Alonso, Vincent Fortuin
Expectation Programming
Video
Tim Reichelt, Adam Golinski, Luke Ong, Tom Rainforth
Posterior Collapse and Latent Variable Non-identifiability
Yixin Wang, John P. Cunningham
Slice Sampling Reparameterization Gradients
Video
David M. Zoltowski, Diana Cai, Ryan P. Adams
Marginalised Spectral Mixture Kernels with Nested Sampling
Video
Fergus Simpson, Vidhi Lalchand, Carl Edward Rasmussen
Neural Linear Models with Functional Gaussian Process Priors
Video
Joe Watson, Jihao Andreas Lin, Pascal Klink, Jan Peters
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Video
William Tebbutt, Arno Solin, Richard E. Turner
The Gaussian Neural Process
Video
Wessel Bruinsma, James Requeima, Andrew Y. K. Foong, Jonathan Gordon, Richard E. Turner
Annealed Stein Variational Gradient Descent
Video
Francesco D'Angelo, Vincent Fortuin
A Novel Regression Loss for Non-Parametric Uncertainty Optimization
Joachim Sicking, Maram Akila, Maximilian Pintz, Tim Wirtz, Asja Fischer, Stefan Wrobel
Variational Beam Search for Novelty Detection s
Video
Aodong Li, Alex J. Boyd, Padhraic Smyth, Stephan Mandt
Gradient Regularisation as Approximate Variational Inference
Video
Ali Unlu, Laurence Aitchison
On the Inconsistency of Bayesian Inference for Misspecified Neural Networks
Video
Yijie Zhang, Eric Nalisnick
Factorized Gaussian Process Variational Autoencoders
Video
Metod Jazbec, Michael A. L. Pearce, Vincent Fortuin
Understanding Variational Inference in Function-Space
Video
David R. Burt, Sebastian W. Ober, Adrià Garriga-Alonso, Mark van der Wilk
Bayesian Neural Network Priors Revisited
Video
Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Ratsch, Richard E Turner, Mark van der Wilk, Laurence Aitchison
Learning Discrete Distributions by Dequantization
Video
Emiel Hoogeboom, Taco Cohen, Jakub M. Tomczak
Conjugate Energy-Based Models
Video
Hao Wu, Babak Esmaeili, Michael L Wick, Jean-Baptiste Tristan, Jan-Willem van de Meent
Variational Determinant Estimation with Spherical Normalizing Flows
Video
Simon Arthur Passenheim, Emiel Hoogeboom
Gaussian Density Parametrization Flow: Particle and Stochastic Approaches
Video
Théo Galy-Fajou, Valerio Perrone, Manfred Opper
Optimal Thinning of MCMC Output
Video
Marina Riabiz, Wilson Ye Chen, Jon Cockayne, Pawel Swietach, Steven Niederer, Chris Oates
Why Cold Posteriors? On the Suboptimal Generalization of Optimal Bayes Estimates
Video
Chen Zeno, Itay Golan, Ari Pakman, Daniel Soudry
Bijective-Contrastive Estimation
Video
Jae Hyun Lim, Chin-Wei Huang, Aaron Courville, Christopher Pal
Self-Supervised Variational Auto-Encoders
Video
Ioannis Gatopoulos, Jakub M. Tomczak
Generalized Doubly-Reparameterized Gradient Estimators
Video
Matthias Bauer, Andriy Mnih
Sensible Priors for Bayesian Neural Networks through Wasserstein Distance Minimization to Gaussian Processes
Ba-Hien TRAN, Dimitrios Milios, Simone Rossi, Maurizio Filippone
Bootstrap Ensembles as Variational Inference
Video
Dimitrios Milios, Pietro Michiardi, Maurizio Filippone
Argmax Flows: Learning Categorical Distributions with Normalizing Flows
Video
Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, Max Welling
Scalable Hybrid Hidden Markov Model with Gaussian Process Emission for Sequential Time-series Observations
Video
Yohan Jung, Jinkyoo Park
HWA: Hyperparameters Weight Averaging in Bayesian Neural Networks
Video
Belhal Karimi, Ping Li
Ensemble sampler for infinite-dimensional inverse problems
Video
Jeremie Coullon, Robert J. Webber
i-DenseNets
Video
Yura Perugachi-Diaz, Jakub M. Tomczak, Sandjai Bhulai
Bayesian Evidential Deep Learning with PAC Regularization
Video
Manuel Haussmann, Sebastian Gerwinn, Melih Kandemir