List of papers
Papers can be found in OpenReview, where they are available for archival purposes. This does not
constitute a proceedings for the symposium.
-
Variational Predictive Information Bottleneck
Alexander A. Alemi
-
Newtonian Monte Carlo: a second-order gradient method for speeding up MCMC
Nimar S. Arora, Nazanin Khosravani Tehrani, Kinjal Shah, Michael Tingley
-
Towards Characterizing the High-dimensional Bias of Kernel-based Particle Inference Algorithms
Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Shengyang Sun, Denny Wu, Tianzong Zhang
-
GP-ALPS: Automatic Latent Process Selection for Multi-Output Gaussian Process Models
Pavel Berkovich, Eric Perim, Wessel Bruinsma
-
Latent Variable Session-Based Recommendation
Stephen Bonner, David Rohde
-
Arbitrarily-conditioned Data Imputation
Micael Carvalho, Thibaut Durand, Jiawei He, Nazanin Mehrasa, Greg Mori
-
Exchangeable Variational Autoencoders with Applications to Genomic Data
Jeffrey Chan, Jeffrey Spence, and Yun Song
-
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif, Pierre Alquier
-
Bijectors.jl: Flexible transformations of distributions
Tor Erlend Fjelde, Kai Xu, Mohamed Tarek, Sharan Yalburgi, Hong Ge
-
Deep Amortized Variational Inference for Multivariate Time Series Imputation with Latent Gaussian Process Models
Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, Stephan Mandt
-
Graph Tracking in Dynamic Probabilistic Programs via Source Transformations
Philipp Gabler, Martin Trapp, Hong Ge, Franz Pernkopf
-
Variationally Inferred Sampling Through a Refined Bound
Victor Gallego, David Rios Insua
-
Masking schemes for universal marginalisers
Divya Gautam, Maria Lomeli, Kostis Gourgoulias, Daniel H. Thompson, Saurabh Johri
-
Automatically Trading off Time and Variance when Selecting Gradient Estimators
Tomas Geffner, Justin Domke
-
Variational Selective Autoencoder
Yu Gong, Hossein Hajimirsadeghi, Jiawei He, Megha Nawhal, Thibaut Durand, Greg Mori
-
Efficient Bayesian Inference for Nested Simulators
Bradley Gram-Hansen, Christian Schroeder de Witt, Robert Zinkov, Saeid Naderiparizi, Adam Scibior, Andreas Munk, Frank Wood, Mehrdad Ghadiri, Philip Torr, Yee Whye Te, Atilim Gunes Baydin, Tom Rainforth
-
Langevin Dynamics as Nonparametric Variational Inference
Matthew D. Hoffman, Yian Ma
-
Variational Bayesian Methods for Stochastically Constrained System Design Problems
Prateek Jaiswal, Harsha Honnappa, Vinayak A. Rao
-
Batch simulations and uncertainty quantification in Gaussian process surrogate-based approximate Bayesian computation
Marko Järvenpää, Aki Vehtari, Pekka Marttinen
-
Sequential Learning for Dirichlet Process Mixtures
Chunlin Ji, Bin Liu, Yingkai Jiang, Ke Deng
-
Stein Variational Gradient Descent for Approximate Bayesian Computation
Chunlin Ji, Jiangsheng Yi, Wanchuang Zhu
-
Normalizing Constant Estimation with Optimal Bridge Sampling and Normalizing Flows
He Jia, Uros Seljak
-
Spectral Mixture Kernel Approximation Using Reparameteriztaion Random Fourier Feature
Yohan Jung, Jinkyoo Park
-
Gaussian Process Meta-Representations For Hierarchical Neural Network Weight Priors
Theofanis Karaletsos, Thang D. Bui
-
Approximate Importance Sampling
Alec Koppel*, Amrit Singh Bedi*, Brian M. Sadler, and Victor Elvira
-
Bayesian Model Selection for Identifying Markov Equivalent Causal Graphs
Mehmet Burak Kurutmaz, Melih Barsbey, Ali Taylan Cemgil, Sinan Yıldırım, Umut Şimşekli
-
BooVAE: A Scalable Framework for Continual VAE Learning under Boosting Approach
Anna Kuzina, Evgenii Egorov, Evgeny Burnaev
-
Approximate Inference for Fully Bayesian Gaussian Process Regression
Vidhi Lalchand, Carl Edward Rasmussen
-
Learning undirected models via query training
Miguel Lázaro Gredilla, Wolfgang Lehrach, Dileep George
-
Scalable Gradients and Variational Inference for Stochastic Differential Equations
Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David K. Duvenaud
-
Towards Hierarchical Discrete Variational Autoencoders
Valentin Liévin, Andrea Dittadi, Lars Maaløe, Ole Winther
-
SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models
Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P. Adams, Ricky T. Q. Chen
-
HM-VAEs: a Deep Generative Model for Real-valued Data with Heterogeneous Marginals
Chao Ma, Sebastian Tschiatschek, Yingzhen Li, Richard Turner, Jose Miguel Hernandez-Lobato, Cheng Zhang
-
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino, Lei Chen, Jiawei He, Stephan Mandt
-
Genomic variety prediction via Bayesian nonparametrics
Lorenzo Masoero, Federico Camerlenghi, Stefano Favaro, Tamara Broderick
-
Sinkhorn Permutation Variational Marginal Inference
Gonzalo Mena, Erdem Varol, Amin Nejatbakhsh, Eviatar Yemini, Liam Paninski
-
Interpretable User Models via Decision-rule Gaussian Processes
Danial Mohseni-Taheri, Selvaprabu Nadarajah, Theja Tulabandhula
-
Structured Semi-Implicit Variational Inference
Iuliia Molchanova, Dmitry Molchanov, Novi Quadrianto, Dmitry Vetrov
-
Non-reversibly updating a uniform [0,1] value for accept/reject decisions
Radford M. Neal
-
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Jascha Sohl-Dickstein, Samuel S. Schoenholz
-
Benchmarking the Neural Linear Model for Regression
Sebastian W. Ober, Carl E. Rasmussen
-
Distributional Bayesian optimisation for variational inference on black-box simulators
Rafael Oliveira, Lionel Ott, Fabio Ramos
-
Neural Permutation Processes
Ari Pakman, Yueqi Wang, Liam Paninski
-
The Gaussian Process Prior VAE for Interpretable Latent Dynamics
Michael Arthur Leopold Pearce
-
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
Yura Perov*, Logan Graham*, Kostis Gourgoulias, Jonathan Richens, Ciarán Lee, Adam Baker, Saurabh Johri
-
Seeing the whole picture instead of a single point: Self-supervised likelihood learning for deep generative models
Petra Poklukar, Judith Bütepage, Danica Kragic
-
Challenges in Computing and Optimizing Upper Bounds of Marginal Likelihood based on Chi-Square Divergences
Melanie F. Pradier, Michael C. Hughes, Finale Doshi-Velez
-
Pseudo-Bayesian Learning via Direct Loss Minimization with Applications to Sparse Gaussian Process Models
Rishit Sheth, Roni Khardon
-
Sparse Orthogonal Variational Inference for Gaussian Processes
Jiaxin Shi, Michalis Titsias, Andriy Mnih
-
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv, Alexander A. Alemi
-
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
Jakub Świątkowski, Kevin Roth, Bastiaan S. Veeling, Linh Tran, Joshua V. Dillon, Jasper Snoek, Stephan Mandt, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin
-
Optimal Transport for Distribution Adaptation in Bayesian Hilbert Maps
Anthony Tompkins, Ransalu Senanayake, Fabio Ramos
-
Efficient Inference Amortization in Graphical Models using Structured Continuous Conditional Normalizing Flows
Christian Weilbach, Boyan Beronov, William Harvey, Frank Wood
-
AdvancedHMC.jl: A modular implementation of Stan's No-U-Turn sampler in Julia
Kai Xu, Hong Ge, Will Tebbutt, Mohamed Tarek, Martin Trapp, Zoubin Ghahramani
-
Characterizing and Avoiding Problematic Global Optima of Variational Autoencoders
Yaniv Yacoby, Weiwei Pan, Finale Doshi-Velez
-
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
Ziyu Wang, Shuyu Cheng, Yueru Li, Jun Zhu, Bo Zhang
-
Coping With Simulators That Don’t Always Return
Andrew Warrington, Saied Naderiparizi, Frank Wood
-
Variational Gaussian Process Models without Matrix Inverses
Mark van der Wilk, ST John, Artem Artemev, James Hensman
-
Global Approximate Inference via Local Linearisation for Temporal Gaussian Processes
William J. Wilkinson, Paul E. Chang, Michael Riis Andersen, Arno Solin
-
Rapid Model Comparison by Amortizing Across Models
Lily H. Zhang, Michael C. Hughes
-
Meta-Learning for Variational Inference
Ruqi Zhang, Yingzhen Li, Chris De Sa, Sam Devlin, Cheng Zhang
-
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuan Zhou, Hongseok Yang, Yee Whye Teh, Tom Rainforth