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Abstract

Performing estimation and inference on massive datasets under time and memory
constraints is a critical task in machine learning. One approach to tackle these
challenges is offered by coresets, succinct data summaries that come with strong
theoretical guarantees, and can operate under computational resource restrictions.
In this work, we explore how such data summaries can be used in posterior infer-
ence through variational methods. We develop a novel coreset construction for
approximate posterior inference in the nonparametric Dirichlet process Gaussian
mixture model. We empirically demonstrate how our method allows trading small
approximation error for large gains in runtime and memory usage.

1 Introduction

Coresets are data summarization techniques that come with strong theoretical guarantees. They are
domain specific and provide an upper bound on the performance gap of a specific algorithm trained
on the coreset versus trained of the full data. Many problems admit coreset constructions that produce
sublinear-sized summaries of the data set, examples being K-Means (Feldman et al., 2013; Lucic
et al., 2016), GMM (Lucic et al., 2017), logistic regression (Huggins et al., 2016) and DP-Means
(Bachem et al., 2015).

In the domain of posterior inference for mixture models, coresets have also received attention. These
works all rely on reusing the coresets constructed for the negative log likelihood of the data for
posterior inference, and use them to perform weighted Gibbs sampling (McGrory et al., 2014) and
weighted coordinate ascent variational inference (CAVI) (Zhang et al., 2016) on Bayesian GMMs.
Although the latter two works demonstrate the effectiveness of coresets in Bayesian inference on
GMMs, they provide no theoretical approximation guarantees.

In this paper, we consider the problem of scaling up variational inference through coresets for
Dirichlet process Gaussian mixture models (DPGMM). We develop a novel coreset construction for
variational inference in the GMM model that possesses strong theoretical guarantees and relates to
posterior regularization. We show how the same coreset generation method extends to the DPGMM
and empirically validate our method with a weighted CAVI.

2 Background

2.1 Variational Inference

Variational inference solves the approximate posterior inference problem by finding a distribution
q from a restricted density family Q close to the true posterior in terms of the KL divergence, This
objective is equivalent to maximizing the evidence lower bound ELBOX(q) =

∫
q(Z) ln p(X,Z)

q(Z) dZ,
where X is the observed data, and Z denotes all latent variables. By taking the mean field assumption
that q factorizes into L disjoint groups, this objective can be maximized in the conjugate setting with
coordinate ascent (CAVI). More advanced methods extended to the stochastic (Hoffman et al., 2013)



and the streaming (Broderick et al., 2013) settings, while black-box variational inference (Ranganath
et al., 2014) and automatic differentiation variational inference Kucukelbir et al. (2015) work even in
the non-conjugate setting, where closed-form updates are unknown.

2.2 Coresets

Let γ1, ..., γM be non-negative weights, C = {(γ1, x1), ..., (γM , xM )} be a weighted set, Q a
query space, Q ∈ Q a query and a non-negative, additively decomposable cost function over
the contributions f of data points, defined as cost(X,Q) =

∑
x∈X f(x,Q) and cost(C,Q) =∑

(γ,x)∈C γf(x, Q), respectively. Then C is a strong ε-coreset for X if for all queries Q ∈ Q

it holds that |cost(X, Q) − cost(C, Q)| ≤ εcost(X, Q), that is, the cost function on the coreset
approximates the cost on the full data up to a multiplicative factor 1 + ε uniformly over all queries.

From the definition above, we see that the notion of coreset is inherently problem-specific. Recently,
the notion of lightweight coreset was coined (Bachem et al., 2017), which relaxes the traditional defi-
nition of coresets by allowing an additive approximation error in conjunction with the multiplicative
error guarantee.

3 Variational Inference with Coresets

3.1 Why coresets?

The key intuition behind employing coresets for posterior inference is that these importance sampling
schemes capture dense areas with a few high-weighted points, and represent small components with
low-weighted points. On the other hand, uniform subsampling misses the small components with
high probability. This phenomenon is illustrated by running our proposed method on a toy example,
sampled from a Chinese restaurant process, where the coreset size is fixed to 2% of the data. The
results of posterior inference is depicted in Figure 1, where the coresets visibly outperform the
uniform subsample in representing the component posteriors more precisely. In this light, we hope to
obtain a more accurate posterior approximation with coresets, while being able to work under both
memory and time constraints.

(a) Full data (b) Coreset (c) Uniform

Figure 1: Posterior means and covariances of DPGMM on the full data, coreset and uniform sample.
The color coding of the points denote the generated cluster belongings, coreset points are depicted by
white stars, and the blue ellipses are the one standard deviation density contours of each component.

3.2 Coresets for Variational Inference in BGMM

In this section, we review the state-of-the-art method for constructing coresets for the data log
likelihood of GMM and highlight its weakness in Bayesian inference. Then we propose a novel
coreset construction method for variational inference in Bayesian GMM. We then show how the same
algorithm is suitable for inference in Dirichlet process Gaussian mixture models.

Let Z denote the latent assignment variables, and let θ refer to all latent variables except Z. In a T -
component GMM, θ ∈ Θ includes the mixture weights, component means and precision matrices, so
θ = [(w1,µ1,Λ1), ..., (wT ,µT ,ΛT )]. The negative log likelihood of the data can be decomposed as
−L(X|θ) = −n lnW (θ) + φ(X|θ), where W (θ) =

∑T
t=1

wt√
|2πΛ−1

t |
is the normalization constant
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assuring that function

φ(X|θ) =

N∑
n=1

φ(xn|θ) = −
N∑
n=1

ln

 T∑
t=1

wt

W (θ)
√
|2πΛ−1t |

· exp

(
−1

2
(xn − µt)ᵀΛt(xn − µt)

)
is positive for all θ ∈ Θ. Coresets for GMM were developed by Feldman et al. (2011) followed by an
update from Lucic et al. (2017). Their main result claims that on the restricted set of model parameter
space Θλ, where the eigenvalues of the covariance matrices are bounded by [λ, 1/λ], λ ∈ (0, 1], a

coreset C of size O
(
D4T 6+T 2 ln 1

δ

λ4ε2

)
a multiplicative approximation guarantee for φ can be obtained

with high probability. This in turn imply that |L(X|θ)− L(C|θ)| → 0 as ε→ 0.

In the Bayesian inference for GMM, one seeks to obtain a posterior over the covariance matrices,
which entails integrating over the whole cone of positive semidefinite matrices. Since the previous
guarantees only hold for the restricted parameter space, they are not easily extendable to the Bayesian
framework. In this section, we show that the recently developed lightweight coresets (Bachem
et al., 2017) sampling scheme also applies to the GMM. Moreover, it gives a handle on the issue of
restraining the parameter space, which previous coreset guarantees suffered from.

Algorithm 1 Coreset for GMM
Input: X data set, M summary size
µ = 1

N

∑N
n=1 xn

for x ∈ X do
q(x) = 1

2N + ||x−µ||2

2
∑N
n=1 ||xn−µ||2

end for
C← sample M points with probability q(x)
from X and assign weights γx = 1

M ·q(x)
return Coreset C

xn

µkΛk vk

zn

∞

N

Figure 2: Graphical representation of the
DPGMM

Theorem 3.1. Let ε > 0, δ > 0 and k ∈ N. Let X be a set of N points from RD and let C be the
output of Algorithm 1 with M ∈ Ω

(
D4T 4+log 1

δ

ε2

)
. Then, with probability at least 1− δ:

|φ(X|θ)− φ(C|θ)| ≤ εφ(X|θ) + ε

T∑
t=1

Tr(Λt)

N∑
n=1

||xn − µ||2

uniformly for all θ ∈ Θ, where µ = 1
N

∑N
n=1 xn is the data mean.

The resulting sampling algorithm is identical to the embarrassingly parallel lightweight coreset
construction (Bachem et al., 2017). The guarantee of the theorem is scale-invariant, and the required
coreset size is independent of the data set size. In contrast to the current methods, the coreset size
is independent of underlying model parameter assumptions. Instead, the relaxing additive term is
affected by “collapsing” mixture components. Moreover, this term resembles the Tikhonov regularizer
in Gaussian maximum likelihood estimation (Honorio and Jaakkola, 2013).

Now, since the guarantee holds uniformly over the parameter space, we can apply the Bayesian poste-
rior inference framework and connect the result with variational inference. We posit an approximate
posterior distribution family Qθ over θ and we want to find q∗θ = arg maxqθ∈Qθ

fX(qθ), where
fX(qθ) =

∫
q(θ) ln p(X,θ)

q(θ) dθ and fX(qθ) ≥ ELBOX(qθ). Taking the expectation with respect to
qθ over the guarantee of Theorem 3.1, we get the following corollary:

Corollary 3.1.1. |E[φ(X|θ)]− E[φ(C|θ)]| ≤ εE[φ(X|θ)]+ε·
∑N
n=1 ||xn−µ||2 ·

∑T
t=1 E[Tr(Λt)]

for all qθ ∈ Qθ w.p. at least 1− δ. Moreover, |fX(qθ)− fC(qθ)| → 0 as ε→ 0.

This lemma gives a handle on the arbitrarily bad bound of the rhs of the guarantee in Theorem 3.1,
since now the additive term is defined in terms of the expectation under the approximate posterior
distribution. Since the optimization objective is well approximated by employing the coreset instead
of the full data, it is sensible to perform the optimization with the coreset.
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3.3 DPGMM

The CAVI for Dirichlet process mixture models (DPMM) (Antoniak, 1974; Teh, 2011) of exponential
families was presented by Blei et al. (2006). In our application, we employ a member of the
exponential family: a multivariate normal distribution, with means and the precisions following
the Normal-Wishart distribution. We call this model the Dirichlet process Gaussian mixture model
(DPGMM) and we show how our coreset construction method extends to this setting. The graphical
model of the problem can be seen in Figure 2, where π(v) are the mixing proportions given by the
stick-breaking construction. In order to cope with the infinite mixture, the variational distribution is
truncated at level T and is assumed to be fully decomposable over the latent variables of the model:

q(v,µ,Λ,Z) =

T−1∏
t=1

qρt(vt)︸ ︷︷ ︸
Beta

T∏
t=1

qmt,βt,Wt,νt(µt,Λt)︸ ︷︷ ︸
Normal-Wishart

N∏
n=1

qφn(zn)︸ ︷︷ ︸
Multinomial

By the truncation, calculating expectations with respect to q nullifies component contributions with
t > T and thus the guarantees of Lemma 3.1.1 hold, i.e. the coreset construction for variational
inference in DPGMM is reduced to the coreset construction of the GMM. In order to perform
inference on coresets, the standard VI algorithms should accommodate weighted data. For simplicity,
we illustrate it with CAVI for DPGMM in Algorithm 2 in the supplementary materials. However, our
coreset retains the guarantees under more advanced methods that operate in the stochastic setting.

4 Experiments and Discussion

(a) Relative approximation error of by coresets and uniform
subsampling.

(b) Speedup-accuracy tradeoff. The time mea-
surements include also the coreset construction.

In our experiments, we compare our variational inference for DPGMM with coresets against inference
on a uniform subsample. Uniform subsampling in some cases is a strong competitor, since if the data
spreads out in balanced clusters, then clever importance sampling methods are not helping much. We
perform the experiments on several datasets presented in the supplementary materials.

One of the most important tasks performed with Bayesian models is determining the likelihood of un-
seen data. With the predictive posterior (Blei et al., 2006) of our DPGMM model, one can approximate
the likelihood of the N + 1-th unseen point as p(xN+1|X,θ0) ≈

∑T
t=1 E[πt(v)]E[p(xN+1|µt,Λt)].

We split the data into 80% training and 20% testing portion randomly. The CAVI optimization is
performed with the following hyperparameters: mean precision prior β0 = 0.8, degree of freedom of
the Inverse-Wishart covariance prior ν0 = D, weight concentration prior α0 = 5, µ0 set to 0, W0

set to 10 · I and truncation level T = 100. We treat every point from the test set as the N + 1-th
unseen point and report the relative error to the total log probability of the test data. The results can
be seen in Figure 3a on logarithmic scale with 95 percent confidence intervals over 25 runs. The
coreset outperforms uniform subsampling on some datasets, whereas on others, the performance
is similar. The factor of improvement over uniform subsampling is dependent on the normalized
Shannon entropy of the produced coreset sampling distribution: in case of MNIST, these values are
over 0.98, which in turn means that the coreset construction samples almost uniformly.

Finally, we investigate the speedup-accuracy tradeoff of coresets. Assuming coreset size M > D,
one iteration of CAVI on coresets offers a speedup of N/M compared to the full data. Figure 3b
shows the relative speedup versus the relative error in the held-out log likelihood.
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5 Supplementary materials

5.1 Proof of Theorem 3.1

First we prove the following lemma, which is similar to Lemma 6 of Lucic et al. (2017). In the
following, the norms refer to the ||.||2 norms of vectors and matrices.
Lemma 5.1. Let X be a set of N points from RD. Define

f̃(θ) =
1

N
φ(X|θ) +

∑T
t=1 Tr(Λt)

N

N∑
n=1

||xn − µ||2

Then for all n ∈ {1, 2, ..., N}:

sup
θ

φ(xi|θ)

f̃(θ)
≤ 6N · ||xi − µ||2∑N

n=1 ||xn − µ||2
+ 6

Proof. Rewrite φ(xi|θ) as

φ(xi|θ) = − ln

(
T∑
t=1

w′t exp

(
−1

2
||Λ

1
2
t (xi − µt)||2

))
where w′t = wt

W (θ)
√
|2πΛ−1

t |
. By the triangle inequality

||Λ
1
2
t (xi − µt)|| ≤ ||Λ

1
2
t (xi − µ)||+ ||Λ

1
2
t (µ− µt)||

Taking the squares and using 2ab ≤ a2 + b2 we have

||Λ
1
2
t (xi − µt)||2 ≤ 2||Λ

1
2
t (xi − µ)||2 + 2||Λ

1
2
t (µ− µt)||2 (1)

We focus on the first term on the rhs. Since the precision matrix is the inverse of the covariance
matrix, it admits the eigenvalue decomposition Λt = QtDtQ

−1
t , thus Λ

1
2
t = QtD

1
2
t Q−1t and

||Λ
1
2
t (xi − µ)||2 = ||D

1
2
t Q−1t (xi − µ)||2

≤ ||D
1
2
t ||2||Q−1t (xi − µ)||2

= ||D
1
2
t ||2||xi − µ||2

= λ∗t ||xi − µ||2

≤ Tr(Λt)||xi − µ||2

≤
T∑
t=1

Tr(Λt)||xi − µ||2

where λ∗t is the largest eigenvalue of Λt. In the first and third line we used the 2-norm preserving
property of orthogonal matrices, the inequality of second line follows from the definition of the
norm, the fourth line follows from the fact that the 2-norm of the matrix equals its largest eigenvalue.
Finally, in the fifth and sixth line, since Λt is positive semidefinite, we can upper bound the largest
eigenvalue by the sum of all eigenvalues or equivalently, the by the trace and then we sum over all
components. Plugging this result into Equation 1 and then to the definition of φ, we get

φ(xi|θ) ≤ − ln

(
T∑
t=1

w′t exp

(
−

T∑
t=1

Tr(Λt)||xi − µ||2 − ||Λ
1
2
t (µ− µt)||2

))

=

T∑
t=1

Tr(Λt)||xi − µ||2 − ln

(
T∑
t=1

w′t exp

(
−1

2
||Λ

1
2
t (µ− µt)||2

)2
)

≤
T∑
t=1

Tr(Λt)||xi − µ||2 + 2φ(µ|θ)
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where the last inequality follows from Jensen’s inequality and the convexity of h(x) = x2. We apply
the inequality we just obtained for µ and for all xn ∈ X:

φ(µ|θ) ≤
T∑
t=1

Tr(Λt)||xn − µ||2 + 2φ(xn|θ)

Now we sum over all xn ∈ X and divide by N :

φ(µ|θ) ≤ 1

N

T∑
t=1

Tr(Λt)

N∑
n=1

||xn − µ||2 +
2

N
φ(X|θ)

Combining the last three results, we have

φ(xi|θ) ≤
T∑
t=1

Tr(Λt)||xi − µ||2 +
2

N

T∑
t=1

Tr(Λt)

N∑
n=1

||xn − µ||2 +
4

N
φ(X|θ)

We are ready to finish the proof by:

φ(xi|θ)

f̃(θ)
≤
∑T
t=1 Tr(Λt)||xi − µ||2

f̃(θ)
+

2
∑T
t=1 Tr(Λt)

∑N
n=1 ||xn − µ||2

Nf̃(θ)
+

4φ(X|θ)

Nf̃(θ)

≤
∑T
t=1 Tr(Λt)||xi − µ||2

1
N

∑T
t=1 Tr(Λt)

∑N
n=1 ||xn − µ||2

+
2
∑T
t=1 Tr(Λt)

∑N
n=1 ||xn − µ||2∑T

t=1 Tr(Λt)
∑N
n=1 ||xn − µ||2

+
4φ(X|θ)

φ(X|θ)

=
6N · ||xi − µ||2∑N
n=1 ||xn − µ||2

+ 6

where in the last inequality we applied the definition of f̃(θ) and ignored some positive terms on
demand. Since the rhs does not depend on θ, this proves the claim.

For the rest of the proof, we denote

s(xi) =
6N · ||xi − µ||2∑N
n=1 ||xn − µ||2

+ 6

so we have supθ
φ(xi|θ)
f̃(θ)

≤ s(xi). We further define S = 1
N

∑N
n=1 s(xn) = 12

Having proven Lemma 5.1, we move on to proving Theorem 3.1. The proof is similar to the proof of
lightweight K-Means coresets (Bachem et al., 2017) and is based on Theorem 5 of Li et al. (2001),
which we repeat for completeness:
Theorem 5.2 (Theorem 5 of Li et al. (2001)). Let α > 0, ν > 0 and δ > 0. Let X be a countably
infinite domain and let q be any probability distribution over X . Let F be a set of functions from
X to [0, 1] with Pdim(F) = d′. Denote by C a sample of M points from X sampled independently
according to q. Then, for M ∈ Ω

(
1
α2ν (d′ log 1

ν + ln 1
δ )
)
, with probability at least 1− δ it holds that

∀f ∈ F : dν

(∑
x∈X

q(x)f(x),
1

|C|
∑
x∈C

f(x)

)
≤ α

where dν(a, b) = |a−b|
a+b+ν .

Now we are ready to prove Theorem 3.1.

Proof. Applying the theorem to our setting, we choose f(x) = φ(x|θ)
f̃(θ)s(x)

and q(x) = s(x)
N ·S . By the

definition of s(x) and S, f maps onto [0, 1] and
∑
x∈X q(x) = 1, so they satisfy the requirements of

the theorem. We first note that since f maps onto [0, 1], both
∑
x∈X q(x)f(x) and 1

|C|
∑
x∈C f(x)
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are upper bounded by 1. Hence we instantiate α = ε/36, ν = 1/2 and by multiplying with the
denominator that is upper bounded by 3, the theorem guarantee can be transformed into:∣∣∣∣∣∑

x∈X

q(x)f(x)− 1

|C|
∑
x∈C

f(x)

∣∣∣∣∣ ≤ ε

12
(2)

We now have ∑
x∈X

q(x)f(x) =

∑
x∈X φ(x|θ)

f̃(θ) · S ·N
(3)

and

1

|C|
∑
x∈C

f(x) =

∑
x∈C

S·N
|C|·s(x)φ(x|θ)

f̃(θ) · S ·N
(4)

Denoting γ(x) = S·N
|C|·s(x) , inserting Equations 3 and 4 into 2 and multiplying by f̃(θ) · S ·N we

get: ∣∣∣∣∣∑
x∈X

φ(x|θ)−
∑
x∈C

γ(x)φ(x|θ)

∣∣∣∣∣ ≤ εf̃(θ) ·N (5)

where we used the fact that S = 12. We arrived to the claimed error bound in the theorem.

There are two more steps to complete the proof. First, we need to argue that the sampling distribution
and weighting scheme in Algorithm 1 agrees with q(.) and γ(.) This is easily seen by pattern
matching.

Second, in order do claim the required coreset size, we need to find the pseudo-dimension of f .
This was derived in Lucic et al. (2017) and turns out to be O

(
D4T 4

)
. Since we chose α = ε/36

and ν = 1/2, the required coreset size by Theorem 5.2 is Ω
(
D4T 4+log 1

δ

ε2

)
. Our proof is now

complete.

5.2 Proof of Corollary 3.1.1

Proof. From Theorem 3.1 we know that under the lemma’s assumption

|E[φ(X|θ)]− E[φ(C|θ)]| = |E[φ(X|θ)− φ(C|θ)]|
≤ E[|φ(X|θ)− φ(C|θ)|]

≤ εE[φ(X|θ)] + ε

N∑
n=1

||xn − µ||2 ·
T∑
t=1

E[Tr(Λt)]

where for the last inequality we used Theorem 3.1 and the linearity of expectation.

As for the second part,

|fX(θ)− fC(θ)| =
∣∣∣∣E [ln p(X,θ)

q(θ)
− ln

p(C,θ)

q(θ)

]∣∣∣∣
= |E [ln p(X|θ)− ln p(C|θ)]|
= |E[φ(X|θ)]− E[φ(C|θ)]|

Having reduced the problem to the previous one, we proved the claims of the lemma.
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5.3 Lower bounding

As optimizing fC(qθ) with CAVI is intractable, we search for a suitable lower bound, which turns
out to be the ELBOC(g).

fC(qθ) =

∫
q(θ) ln

p(C,θ)

q(θ)
dθ

=

∫
q(θ) ln

∫
p(C,θ,Z) dZ

q(θ)
dθ

=

∫
q(θ) ln

(∫
p(C,θ,Z)

q(θ)q(Z)
q(Z) dZ

)
dθ

≥
∫∫

q(θ)q(Z) ln
p(C,θ,Z)

q(θ)q(Z)
dZ dθ

= ELBOC(g)

where the inequality follows from Jensen’s inequality. If the latent variables are discrete, the second
integral is replaced by a sum.

However, our coreset retains the guarantees under more sophisticated inference methods such as
black-box variational inference, which can operate even without introducing latent variables.

5.4 Weighted CAVI for DPMM

Algorithm 2 Weighted CAVI - DPMM
Input: coreset C = {(γ1,x1), ..., (γN ,xN )}; prior params α0,µ0, β0,W0, ν0
Initialize φ
repeat

for t = 1 to T do
ρt,1 = 1 +

∑N
n=1 φn,t

ρt,2 = α0 +
∑N
n=1

∑T
j=t+1 φn,j

Nt =
∑N
n=1 φnt

xt = 1
Nt

∑N
n=1 φntxn

St = 1
Nt

∑N
n=1 φnt(xn − xt)(xn − xt)

ᵀ

βt = β0 +Nt
mt = 1

βt
(β0m0 +Ntxt)

W−1
t = W−1

0 +NtSt + β0Nt
β0+Nt

· ·(xt − µ0)(xt − µ0)ᵀ

νt = ν0 +Nt
E[ln vt] = ψ(ρt,1)− ψ(ρt,1 + ρt,2)
E[ln(1− vt)] = ψ(ρt,2)− ψ(ρt,1 + ρt,2)

E[ln |Λt|] =
∑D
d=1 Ψ

(
νt+1−d

2

)
+ ln |Wt|

end for
for n = 1 to N do

for t = 1 to T do
φnt = exp

(
E[ln vt] +

∑t−1
i=1 E[ln(1− vi)] + E[ln |Λt|]−

− D
2βt
− νt

2 (xn −mt)
ᵀWt(xn −mt)

)
end for
renormalize φn
φn = γnφn . weight modification

end for
until convergence
return {(ρt,1, ρt,2), mt, Wt, βt, νt, φ.t}Tt=1

The CAVI can be naturally extended to weighted points with a single modification, which can be
motivated as follows. A weighted point (γ,x) can be considered as observing x γ times (possibly

10



fractional). Thus by creating γn copies of point xn, we reduced the problem to the unweighted case.
In practice, we do not need to create actual copies since, for a specific point, the copies have identical
φ vectors (resembling the responsibilities in EM) due to sharing the same location. As a result, we can
concatenate them by weighting in the analogous “E” step, whereas the “M” step remains unaffected.
Since we reduced our weighted scenario to the unweighted case, we are guaranteed that the resulting
algorithm monotonically increases the optimization objective.

5.5 Datasets

We give a short presentation of data sets that are used throughout the experiments:

• KDD (kdd, 2004) — data set used for Protein Homology Prediction KDD competition. It contains
145,751 observations with 74 features that measure the match between a protein and a native
sequence.
• MSYP Bertin-Mahieux and Ellis (2011) — contains features of songs used for prediction of the year

of song release. Contains 515,345 points and 25 selected features.
• CSN (Faulkner et al., 2011) — cellphone accelerometer data for earthquake detection, processed

into 80,000 observations and 17 features.
• MNIST (LeCun et al., 1998) — 70,000 low resolution images of handwritten characters transformed

using PCA with whitening and retaining 10 dimensions.
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