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Abstract

In Bayesian analysis, the posterior follows from the data and a choice of a prior
and a likelihood. One hopes that the posterior is robust to reasonable variation in
the choice of prior, since this choice is made by the modeler and is often somewhat
subjective. A different, equally subjectively plausible choice of prior may result
in a substantially different posterior, and so different conclusions drawn from the
data. Were this to be the case, our conclusions would not be robust to the choice of
prior. To determine whether our model is robust, we must quantify how sensitive
our posterior is to perturbations of our prior.
Variational Bayes (VB) methods are fast, approximate methods for posterior infer-
ence. As with any Bayesian method, it is useful to evaluate the robustness of a VB
approximate posterior to changes in the prior. In this paper, we derive VB versions
of classical non-parametric local robustness measures. In particular, we show that
the influence function of Gustafson (2000) has a simple, easy-to-calculate closed
form expression for VB approximations. We then demonstrate how local robustness
measures can be inadequate for non-local prior changes, such as replacing one
prior entirely with another. We propose a simple approximate non-local robustness
measure and demonstrate its effectiveness on a simulated data set.

1 Local robustness and the influence function

Bayesian robustness studies how changes to the model (i.e., the prior and likelihood) and to the data
affect the posterior. If important aspects of the posterior are meaningfully sensitive to subjectively
reasonable perturbations of the inputs, then the posterior is “non-robust” to these perturbations. In
this paper, we focus on quantifying the sensitivity of posterior means to perturbations of the prior –
either infinitesimally mixing or completely replacing the original prior with another “contaminating
prior”. Our methods allow fast estimation of sensitivity to any contaminating prior without re-fitting
the model. We follow and extend the work of Gustafson (1996) and Gustafson (2000) to variational
Bayes and to approximate non-local measures of sensitivity. For a more general review of Bayesian
robustness, see Berger et al. (2000).

We will now define some terminology. Denote ourN data points by x = (x1, . . . , xN ) with xn ∈ RD.
Denote our parameter by the vector θ ∈ RK . We will suppose that we are interested in the robustness
of our prior to a scalar parameter ε where our prior can be written as p (θ|ε). Let pxε denote the
posterior distribution of θ with prior given by ε and conditional on x, as given by Bayes’ Theorem:
pxε (θ) := p (θ|x, ε) = p(x|θ)p(θ|ε)

p(x) .

A typical end product of a Bayesian analysis might be a posterior expectation of some function,
Epxε [g (θ)], which is a functional of g (θ) and pxε (θ). Local robustness considers how much Epxε [g (θ)]
changes locally in response to small perturbations in the value of ε (Gustafson, 2000). In the present
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work, we consider mixing our original prior, p0 (θ), with some known alternative functional form,
pc (θ):

p (θ|ε) = (1− ε) p0 (θ) + εpc (θ) for ε ∈ [0, 1] . (1)
This is known as epsilon contamination (the subscript c stands for “contamination”), and its construc-
tion guarantees that the perturbed prior is properly normalized. The contaminating prior, pc (θ) need
not be in the same parametric family as p0 (θ), so as pc (θ) ranges over all possible priors, equation (1)
represents an expressive class of perturbations. Under mild assumptions (given in section §A), the
local sensitivity measure at the prior p (θ|ε) given by a particular ε is

Spcε =
dEpxε [g (θ)]

dε

∣∣∣∣
ε

= Covpxε

(
g (θ) ,

pc (θ)− p0 (θ)

p0 (θ) + ε (pc (θ)− p0 (θ))

)
. (2)

The definition in equation (2) depends on a choice of pc (θ), which we denote with a superscript on
Spcε . At ε = 0, we recover the local sensitivity around p0 (θ), which we denote Spc0 .

Rather than choose some finite set of pc (θ) and calculate their corresponding Spcε , one can work with
a single function that summarizes the effect of any pc (θ), called the “influence function” (Gustafson,
2000). Observing that equation (2) is a linear functional of pc (θ) when g (θ), ε, and p (θ|ε) are fixed,
the influence function (when it exists) is defined as the linear operator Iε (θ) that characterizes the
dependence of Spcε on pc (θ):

Spcε =

∫
Iε (θ) pc (θ) dθ where Iε (θ) :=

pxε (θ)

p (θ|ε)
(
g (θ)− Epxε [g (θ)]

)
. (3)

At ε = 0, we recover the local sensitivity around p0 (θ), which we denote I0 (θ). When perturbing
a low-dimensional marginal of the prior, I0 (θ) is an easy-to-visualize summary of the effect of
sensitivity to an arbitrary pc (θ) using quantities calculated only under p0 (θ) (see the example in
section §4 and the extended discussion in Gustafson (2000)). Additionally, the worst case prior in
a suitably defined metric ball around p0 (θ) is a functional of the influence function, as shown in
Gustafson (2000).

2 Variational approximation and linear response

We now derive a version of equation (2) for Variational Bayes (VB) approximations to the posterior.
Recall that an variational approximate posterior is a distribution selected to minimize the Kullback-
Liebler (KL) divergence to pxε across distributions q in some class Q. Let qxε denote the variational
approximation to posterior pxε . We assume that distributions in Q are smoothly parameterized by a
finite-dimensional parameter η whose optimum lies in the interior of some feasible set Ωη .

We would like to calculate the local robustness measures of section §1 for the variational approxi-
mation qxε , but a direct evaluation of the covariance in equation (2) can be misleading. For example,
a common choice of the approximating familyQ is the class of distributions that factorize across θ.
This is known as the “mean field approximation” (Wainwright and Jordan, 2008). By construction,
a mean field approximation does not model covariances between independent components of θ, so
a naive estimate of the covariance in equation (2) may erroneously suggest that the prior on one
component of θ cannot affect the posterior on another.

However, for VB approximations, we can evaluate the derivative on the left hand side of equation (2)
directly. Using linear response variational Bayes (LRVB) (Giordano et al., 2016, 2015), we have

d

dε
Eqxε [g (θ)]

∣∣∣∣
ε

=

∫
qxε (θ)

p (θ|ε)
qη (θ)

T
H−1gηpc (θ) dθ (4)

where gη :=
∂Eqxε [g (θ)]

∂η
, qη (θ) :=

∂ log qxε (θ; η)

∂η
, and H :=

∂2KL (qxε (θ; η) ||pxε )

∂η∂ηT
.

It follows immediately from the definition in equation (3) that we can define the variational influence
function

Iqε (θ) :=
qxε (θ)

p (θ|ε)
qη (θ)

T
H−1gη (5)
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that captures the sensitivity of Eqxε [g (θ)] just as Iε (θ) captures the sensitivity of Epxε [g (θ)].

The VB versions of epsilon sensitivity measures have some advantages and disadvantages relative to
using Markov Chain Monte Carlo (MCMC) to evaluate the exact sensitivities in section §1. Using
MCMC samples from px0 , one can form a Monte Carlo estimate of the covariance in equation (2),
though the sample variance may be infinite when pc has heavier tails than p0. The extent to which
this is a real problem in practice will vary. Similarly, one must take care in numerically evaluating
equation (4), since naively sampling from qxε may also result in infinite variance due to the term
p (θ|ε) in the denominator. Since we have a closed form for qxε , we can instead evaluate equation (4)
as an integral over pc using importance sampling, as described in section §D. Still, providing efficient
estimates of equation (4) for high-dimensional, non-conjugate, heavy-tailed pc remains a challenge.
Finally, in contrast to equation (3), where we do not generally have a closed form expression for pxε ,
every term in equation (5) is known. This means it is easier to evaluate the influence function for VB
approximations than from MCMC draws, especially far from the posterior.

3 Non-local approximation

Equation (3) quantifies the effect of adding an infinitesimal amount of the contaminating prior. In
practice, we may also want to evaluate intermediate values of ε, particularly ε = 1, which represents
completely replacing p0 (θ) with pc (θ). Since pc (θ) may be quite different from p0 (θ), this is a
non-local robustness measure. For MCMC samples, one can use importance sampling, which is
essentially equivalent to evaluating the covariance in equation (2) (with the same problem of infinite
variance – see section §C). For VB, however, we either need to re-fit the model for each new prior
(which may be time consuming) or somehow use the local information at qx0 . In this paper, we
investigate the latter. For the remainder of this section, since our results are general, we will discuss
using local information in px0 . However, the reader should keep in mind that the ultimate goal is to
apply the insights gained to the variational approximation qx0 .

One might hope to linearly extrapolate from ε = 0 to ε = 1 using the slope Spc0 at ε = 0. That is,

we might hope that Epxε [g (θ)]
∣∣ε=1

ε=0
≈ (1− 0)

dEpxε [g(θ)]

dε

∣∣∣
ε=0

. However, as we will now show, this is
not realistic when one of the two priors is more consistent with the data than the other. Inspection of
equation (3) shows that posterior expectations are highly sensitive to perturbations of priors which
are inconsistent with the data: if p (θ|ε) is small in an area of the θ space where pxε is not small,
then the influence function Iε (θ) will be quite large. The model will have high sensitivity to any
contaminating prior, pc (θ), that is more consistent with the model than p (θ|ε) at ε. In particular, this
is true at ε = 0 where p (θ|ε) = p0 (θ) if p0 (θ) is inconsistent with the data. In fact, as we show in
section §A,

Epxε [g (θ)]
∣∣ε=1

ε=0
=

∫ 1

0

dEpxε [g (θ)]

dε

∣∣∣∣
ε

dε =

∫
p (x|θ) pc (θ) dθ∫
p (x|θ) p0 (θ) dθ

Spc0 . (6)

When the model evidence is very different for pc and p0, e.g. when
∫
p (x|θ) p0 (θ) dθ �∫

p (x|θ) pc (θ) dθ as in section §4, the extrapolated slope Spc0 can be quite different from the
effect of replacing completely replacing p0 (θ) with pc (θ).

However, as ε grows away from zero and the new prior pc (θ) is taken into account, the influence
function will shrink. Observe that as a function of ε equation (2), one can show (see section §A) that

dEpxε [g (θ)]

dε

∣∣∣∣
ε

≤ max
{

1

ε
,

1

1− ε

}
Epxε

[∣∣g (θ)− Epxε [g (θ)]
∣∣] . (7)

For ε = 0 or 1, this bound is vacuous, since the ratio pc (θ) /p0 (θ) can be arbitrarily large in areas
assigned positive probability by pxε . However, for intermediate values of ε, such as 1

2 , the bound
is quite strong. In other words, contamination with pc (θ) can have great influence on Epxε [g (θ)]
when ε is close to the boundaries of [0, 1], but once pc (θ) is taken into account with intermediate

ε, its influence is tightly bounded by equation (7). In this sense, the value of
dEpxε [g(θ)]

dε

∣∣∣
ε

is most

atypical of its value across the interval ε ∈ [0, 1] at its endpoints. A real-life example of exactly this
phenomenon is shown in section §4 in Fig. (1).
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This suggests replacing the derivative at ε = 0 with an average of the derivative over the interval
ε ∈ [0, 1]. To do this, note that the difficulty of the integral in equation (6) is the complicated
dependence of pxε on ε in Iε (θ). However, we can approximate the integral by keeping pxε fixed at
px0 so that Iε (θ) only depends on ε through p (θ|ε). Under this approximation, the integral can be
evaluated analytically (see section §B), giving the contaminating pseudo-density, pmv (θ), which
represents the approximate effect of integrating over ε from 0 to 1:

Epxε [g (θ)]
∣∣ε=1

ε=0
≈
∫
I0 (θ) pmv (θ) dθ pmv (θ) :=

pc (θ) p0 (θ)

pc (θ)− p0 (θ)
log

pc (θ)

p0 (θ)
. (8)

In the notation pmv (θ), “mv” stands for “mean value”, by analogy with the mean value theorem for
functions of real numbers. As shown in section §4, using pmv (θ) with I0 (θ) rather than pc (θ) can
represent a significant improvement over equation (3) in practice when extrapolating to ε = 1. We
will focus on using pmv with the variational approximations described in section §2.

4 Experiments

We demonstrate our methods using simulated data from a hierarchical model described in section §E.
Here, we will demonstrate that our sensitivity measures accurately predict the changes in VB solutions.
We discuss the close match between the VB and MCMC results in section §E. The results below
are for the sensitivity of the expectation Epx0 [µ11] to the prior p (µ), though similar results are easily
calculated for any other low-dimensional prior marginal or posterior expectation.

We generate data using true parameters that are far from p0 (θ) so that our model is not robust to
perturbations, as can be seen by the large values of the influence function, which is pictured in the
top left panel of Fig. (1). The posterior mean is shown with a black dot, indicating that, though large,
the influence function is very highly concentrated around the posterior mean. The top right panel of
Fig. (1) indicates how Eqxε [µ11] depends on ε near ε = 0. The slope is very steep at ε = 0, reflecting
the fact that pc (θ) takes values much larger than p0 (θ) near the posterior where the influence function
is very high. However, it very quickly levels off for ε only slightly above zero.

The top right panel of Fig. (1) indicates that extrapolating from the slope Spc0 at ε = 0 will radically
over-estimate the effect of replacing p0 (θ) with pc (θ). This is confirmed in the bottom left panel,
which has the actual change in Eqxε [θ] on the x-axis and

∫
Iqε (θ) pc (θ) dθ on the y-axis. Clearly, the

extrapolation is unrealistic. However, the right panel of Fig. (1) demonstrates that
∫
Iqε (θ) pmv (θ) dθ

accurately matches the effect of replacing p0 (θ) with pc (θ). Note the different ranges in the y-axis
(which prohibit plotting the two graphs on the same scale). The error bars represent importance
sampling error.

Figure 1: Simulation results
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Appendices
A Epsilon sensitivity

Throughout the paper, we make the following assumptions:

• Assumption 1. For all ε ∈ [0, 1], p (θ|ε) is strictly positive where θ has positive measure.

• Assumption 2. Both p (θ|x) and g (θ) p (θ|x) are bounded as a function of θ .

Under these assumptions, equation (2) follows directly from Gustafson (1996) result 8. For com-
pleteness, we reproduce a slightly simpler proof under the slightly less clearly-articulated assumption
that we can exchange integration and differentiation as described, for example, in Durrett (2010,
Appendix A.5). Denote by p (θ|ε) any distribution parameterized by the scalar ε (not necessarily a
prior). Then by direct differentiation,

dEp(θ|ε) [g (θ)]

dε
=

d

dε

∫
p (θ|ε) g (θ) dθ

=

∫
dp (θ|ε)
dε

g (θ) dθ

=

∫
d log p (θ|ε)

dε
p (θ|ε) g (θ) dθ. (9)

By applying equation (9) to g (θ) = 1, we see that Ep(θ|ε)
[
d log p(θ|ε)

dε

]
=
∫ d log p(θ|ε)

dε p (θ|ε) dθ = 0,

so we can subtract 0 = Ep(θ|ε) [g (θ)]Ep(θ|ε)
[
d log p(θ|ε)

dε

]
to get

dEp(θ|ε) [g (θ)]

dε
= Covp(θ|ε)

(
g (θ) ,

d log p (θ|ε)
dε

)
. (10)

To derive equation (2), we simply observe that

d log p (θ|ε)
dε

=
d

dε
log ((1− ε) p0 (θ) + εpc (θ))

=
pc (θ)− p0 (θ)

p0 (θ) + ε (pc (θ)− p0 (θ))
.

Note that the assumptions also suffice to assure that the covariance is bounded.

Next, we observe the simple relationship between epsilon sensitivity at ε = 0 and the effect of
replacing one prior with another. First, defining the normalizing constants

C0 :=

∫
p (x|θ) p0 (θ) dθ

C1 :=

∫
p (x|θ) pc (θ) dθ

Epx0

[
pc (θ)

p0 (θ)

]
=

∫
p (x|θ) p0 (θ)

C0

pc (θ)

p0 (θ)
dθ =

C1

C0
,
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by straightforward manipulation we have

Epxε (θ) [g (θ)]
∣∣
ε=1
− Epxε (θ) [g (θ)]

∣∣
ε=0

=

∫
p (x|θ) pc (θ)

C1
g (θ) dθ − Epx0 (θ) [g (θ)]

=

∫
p (x|θ) pc (θ)

C1

p0 (θ)

C0

C0

p0 (θ)
g (θ) dθ − C0

C1
Epx0

[
pc (θ)

p0 (θ)

]
Epx0 (θ) [g (θ)]

=
C0

C1

(
Epx0 (θ)

[
pc (θ)

p0 (θ)
g (θ)

]
− Epx0

[
pc (θ)

p0 (θ)

]
Epx0 (θ) [g (θ)]

)
=
C0

C1
Covpx0 (θ)

(
g (θ) ,

pc (θ)

p0 (θ)

)
=
C0

C1

dEpxε [g (θ)]

dε

∣∣∣∣
ε=0

.

Finally, we derive equation (7) using equation (2):

∣∣∣∣ dEpxε [g (θ)]

dε

∣∣∣∣
ε

∣∣∣∣ =

∣∣∣∣Covpxε

(
g (θ) ,

pc (θ)− p0 (θ)

p0 (θ) + ε (pc (θ)− p0 (θ))

)∣∣∣∣
≤ Epxε

[∣∣g (θ)− Epxε [g (θ)]
∣∣]Bε

where

Bε = sup
θ

∣∣∣∣ pc (θ)− p0 (θ)

p0 (θ) + ε (pc (θ)− p0 (θ))

∣∣∣∣
= sup

θ

{
pc(θ)−p0(θ)

p0(θ)+ε(pc(θ)−p0(θ)) when pc (θ) > p0 (θ)
p0(θ)−pc(θ)

p0(θ)+ε(pc(θ)−p0(θ)) when pc (θ) ≤ p0 (θ)

= sup
θ

{
pc(θ)−p0(θ)

p0(θ)+ε(pc(θ)−p0(θ)) when pc (θ) > p0 (θ)
p0(θ)−pc(θ)

pc(θ)+(1−ε)(p0(θ)−pc(θ)) when pc (θ) ≤ p0 (θ)

≤ sup
θ

{
pc(θ)−p0(θ)
ε(pc(θ)−p0(θ)) when pc (θ) > p0 (θ)

p0(θ)−pc(θ)
(1−ε)(p0(θ)−pc(θ)) when pc (θ) ≤ p0 (θ)

≤ max
{

1

ε
,

1

1− ε

}
.

B Mean Value Contaminating Prior

Under the assumption that pxε ≈ px0 ,

Epxε [g (θ)]
∣∣
ε=1
− Epxε [g (θ)]

∣∣
ε=0

=

∫ 1

0

∫
pxε (θ) pc (θ)

p (θ|ε)

(
g (θ)− Epxε (θ)|ε=0

[g (θ)]
)
dθdε

≈
∫ 1

0

∫
px0 (θ) pc (θ)

p (θ|ε)

(
g (θ)− Epxε (θ)|

ε=0
[g (θ)]

)
dθdε

=

∫
px0 (θ)

(
g (θ)− Epx0 (θ) [g (θ)]

) ∫ 1

0

pc (θ)

p (θ|ε)
dεdθ

=

∫
px0 (θ)

(
g (θ)− Epx0 (θ) [g (θ)]

) pc (θ)

pc (θ)− p0 (θ)
(log pc (θ)− log p0 (θ)) dθ

=

∫
I0 (θ)

pc (θ) p0 (θ)

pc (θ)− p0 (θ)
(log pc (θ)− log p0 (θ)) dθ.
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Where we have used∫ 1

0

pc (θ)

p (θ|ε)
dε =

∫ 1

0

pc (θ)

(1− ε) p0 (θ) + εpc (θ)
dε

=
pc (θ)

pc (θ)− p0 (θ)

∫ 1

0

d

dε
log ((1− ε) p0 (θ) + εpc (θ)) dε

=
pc (θ)

pc (θ)− p0 (θ)
(log pc (θ)− log p0 (θ)) .

Consequently, applying equation (3) with the pseudo-density

pmv :=
pc (θ) p0 (θ)

pc (θ)− p0 (θ)
(log pc (θ)− log p0 (θ))

represents an approximation to the quantity Epxε [g (θ)]
∣∣
ε=1
− Epxε [g (θ)]

∣∣
ε=0

, which is the effect of
completely replacing p0 (θ) with pc (θ).

C Comparison with MCMC importance sampling

In this section, we show that using importance sampling with MCMC samples to calculate the local
sensitivity equation (2) is precisely equivalent to using the same MCMC samples to estimate the
covariance in equation (10) directly. Suppose, without loss of generality, we have samples θi drawn
from px0 (θ)

θi ∼ px0 (θ)

Epx0 [g (θ)] ≈
∑
i

g (θi) .

If we could calculate the normalizing constants, the importance sampling estimate for Epxε [g (θ)]
would be

Epxε [g (θ)] ≈ 1

N

∑
i

wig (θi)

wi :=
pxε (θ)

px0 (θ)
=
p (x|θ) p (θ|ε)

Cε

C0

p (x|θ) p0 (θ)

= exp (log p (θ|ε)− log p0 (θ) + logC0 − logCε)

C0 :=

∫
p (x|θ) p0 (θ) dθ

Cε :=

∫
p (x|θ) p (θ|ε) dθ.

Differentiating the weights,

dwi
dε

= wi

(
d log p (θ|ε)

dε
− d logCε

dε

)
= wi

(
d log p (θ|ε)

dε
− 1

Cε

∫
p (x|θ) p (θ|ε) d log p (θ|ε)

dε
dθ

)
= wi

(
d log p (θ|ε)

dε
− Epxε

[
d log p (θ|ε)

dε

])
.

It follows that

d

dε

1

N

∑
i

wig (θi)

∣∣∣∣∣
ε

=
1

N

∑
i

wi

(
d log p (θi|ε)

dε
− Epxε

[
d log p (θ|ε)

dε

])
g (θi)
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which is precisely the MCMC estimate of the covariance given by equation (2). In particular, when
ε = 0, we have

d

dε

1

N

∑
i

wig (θi)

∣∣∣∣∣
ε=0

=
1

N

∑
i

(
pc (θi)

p0 (θi)
− Epxε

[
pc (θ)

p0 (θ)

])
g (θi)

and the importance sampling estimate for replacing p0 with pc is∑
i

wig (θi)

∣∣∣∣∣
ε=1

=
1

N

∑
i

(
C0pc (θi)

C1p0 (θi)
− Epxε

[
pc (θi)

p0 (θi)

])
g (θi)

=
C0

C1

d

dε

1

N

∑
i

wig (θi)

∣∣∣∣∣
ε=0

which confirms that the importance sampling estimate is exactly the Monte Carlo analogue of the
relation equation (6).

In general, we do not know C0 and Cε and must use instead

ωi :=
p (θ|ε)
p0 (θ)

ω̃i :=
ωi∑
j ωj

.

Then

dω̃i
dε

=
ωi∑
j ωj

d log p (θi|ε)
dε

− ωi

(
∑
k ωk)

2

∑
j

ωj
d log p (θj |ε)

dε

=
ωi∑
j ωj

d log p (θi|ε)
dε

−
∑
j

ωj∑
k ωk

d log p (θj |ε)
dε


which simply replaces the (possibly intractable) expectation Epxε

[
d log p(θ|ε)

dε

]
with its MCMC esti-

mate.

D Variational Bayes importance sampling

To evaluate equation (4) requires approximate integration for which we using importance sampling:

θs ∼ u (θ) , for s = 1 : S

ws :=
pc (θs)

u (θs)∫
qx0 (θ)

p0 (θ)
qη (θ)

T
H−1gηpc (θ) dθ ≈ 1

S

S∑
s=1

qx0 (θs)

p0 (θs)
qη (θs)

T
H−1gηws

=
1

S

S∑
s=1

Iq0 (θs)ws.

Note that the influence function can be evaluated once for a large number of draws from u (θ), and
then the weights and prior density can be quickly calculated for any perturbation pc (θ), allowing for
fast computation of sensitivity to any pc (θ) with little additional overhead.

Since the influence function is mostly concentrated around qx0 (θ), we set u (θ) to be qx0 (θ) but with
quadrupled variance (so that standard deviations are doubled). Note that this choice of u is a poor
approximation of pc, which is nominally the target distribution for importance sampling. However,
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since Iq0 (θ) is very small far from qx0 (θ), it is an adequate approximation of the integral equation (4).
Formally, suppose that Iq0 (θ) is concentrated on a set A in the sense that supθ∈Ac |I

q
0 (θ)| ≤ ε for

some small δ. Then the absolute error in evaluating equation (4) on the set A only is also bounded by
δ:

∣∣∣∣∫ Iq0 (θ) pc (θ) dθ −
∫
A

Iq0 (θ) pc (θ) dθ

∣∣∣∣ =

∣∣∣∣∫
Ac
Iq0 (θ) pc (θ) dθ

∣∣∣∣
≤
∫
Ac
|Iq0 (θ)| pc (θ) dθ

≤ sup
θ∈Ac

|Iq0 (θ)|
∫
Ac
pc (θ) dθ

≤ δ.

As long as qxε (θ) is chosen to have lighter tails than p0 (θ) (which is determined by Q), Iq0 (θ) will
decay quickly away from qx0 (θ), and we can choose A centered on qx0 (θ). Consequently, we can
think of u as approximating pc (θ) 1A rather than pc (θ).

E Microcredit model

We simulate data using a variant of the analysis performed in (Meager, 2015), though with somewhat
different prior choices. In Meager (2015), randomized controlled trials were run in seven different
sites to try to measure the effect of access to microcredit on various measures of business success.
Each trial was found to lack power individually for various reasons, so there could be some benefit to
pooling the results in a simple hierarchical model. For the purposes of demonstrating robust Bayes
techniques with VB, we will focus on the simpler of the two models in (Meager, 2015) and ignore
covariate information.

We will index sites with k = 1, ..,K (here, K = 30) and business within a site by i = 1, ..., Nk. The
total number of observations was

∑
kNk = 3000. In site k and business i we observe whether the

business was randomly selected for increased access to microcredit, denoted Tik, and the profit after
intervention, yik. We follow (Rubin, 1981) and assume that each site has an idiosyncratic average
profit, µk1 and average improvement in profit, µk2, due to the intervention. Given µk, τk, and Tik,
the _observed profit is assumed to be generated according to

yik|µk, τk, xik, σk ∼ N
(
µTk xik, σ

2
k

)
xik :=

(
1
Tik

)
.

The site effects, µk, are assumed to come from an overall pool of effects and may be correlated:

µk|µ ∼ N (µ,C)

C :=

(
σ2
µ σµτ

σµτ σ2
τ

)
.

The effects µ and the covariance matrix V are unknown parameters that require priors. For µ we
simply use a bivariate normal prior. However, choosing an appropriate prior for a covariance matrix
can be conceptually difficult (Barnard et al., 2000). Following the recommended practice of the
software package STAN (Stan Team, 2015), we derive a variational model to accommodate the
non-conjugate LKJ prior (Lewandowski et al., 2009), allowing the user to model the covariance and
marginal variances separately. Specifically, we use
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C =: SRS

S = Diagonal matrix
R = Covariance matrix

Skk =
√

diag(C)k

We can then put independent priors on the scale of the variances, Skk, and on the covariance matrix,
R. We model the inverse of C with a Wishart variational distribution, and use the following priors:

q
(
C−1

)
= Wishart (VΛ, n)

p0 (S) =

2∏
k=1

p (Skk)

S2
kk ∼ InverseGamma (αscale, βscale)

log p0 (R) = (η − 1) log |R|+ C

The necessary expectations have closed forms with the Wishart variational approximation, as derived
in Giordano et al. (2016). In addition, we put a normal prior on (µ, τ)T and an inverse gamma prior
on σ2

k:

p0 (µ) = N
(
0,Λ−1

)
(11)

p0

(
σ2
k

)
= InverseGamma (ατ , βτ )

The prior parameters used were:

Λ =

(
0.111 0

0 0.111

)
η = 15.010

σ−2
k ∼ InverseGamma(2.010, 2.010)

αscale = 20.010

βscale = 20.010

ατ = 2.010

βτ = 2.010

As seen in Fig. (2) , the means in VB and MCMC match closely.

Figure 2: Comparison with MCMC

In our simulation, µ and µk are in R2, so the domain of the prior p0(µ) is two-dimensional and Iq0 (θ)
can be easily visualized. We consider the problem of estimating the effect of replacing the prior on µ
with a product of independent centered Student t priors. In the notation of section §1, we take

p0 (µ) = N
(
µ1; 0,Λ−1

)
· N

(
µ2; 0,Λ−1

)
pc (θ) = Student (µ1; ν) · Student (µ2; ν) .

We leave all other priors the same, i.e. p0 (τk) = pc (τk) and p0 (C) = pc (C). In our case, we
used ν = 1 and Λ = 0.111. We will present sensitivity of Eqxε [µ11], the first component of the first
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top-level effect. In the notation of section §1, we are taking g (θ) = µ11. Most of the computation is
in generating draws and values for the importance sampling of the influence function, which can be
done once and then reused for any choice of pc (θ) and g (θ).

12


	Local robustness and the influence function
	Variational approximation and linear response
	Non-local approximation
	Experiments
	Epsilon sensitivity
	Mean Value Contaminating Prior
	Comparison with MCMC importance sampling
	Variational Bayes importance sampling
	Microcredit model

