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University of Cambridge, †tab43@cam.ac.uk

Nonnegative matrix factorisation and tri-factorisation
Nonnegative matrix factorisation (NMF) and tri-factorisation (NMTF) methods decompose a given matrix R into two or three smaller matrices so that

R ≈ UV T or R ≈ FSGT , respectively. Schmidt, Winther and Hansen (2009) introduced a Bayesian version of nonnegative matrix factorisation (left),

which we extend to matrix tri-factorisation (right).

Rij ∼ N (Rij|U i · V j, τ
−1) τ ∼ G(τ |α, β) Rij ∼ N (Rij|F i · S ·Gj, τ

−1) τ ∼ G(τ |α, β)

Uik ∼ E(Uik|λU) Vjk ∼ E(Vjk|λV ) Fik ∼ E(Fik|λF ) Skl ∼ E(Skl|λS) Gjl ∼ E(Gjl|λG)

Matrix factorisation
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Matrix tri-factorisation

≈

F S GT
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Slow inference – Gibbs sampling
Schmidt et al. introduced a Gibbs sampling algorithm for inference, to

approximate the posterior distribution over U ,V ,F ,S,G. We sample

new values randomly for each entry in turn of the posteriors given below

(for NMF), to converge to the true posterior. The parameter values can be

derived using Bayes’ theorem.

p(τ |U ,V , D) = G(τ |α∗, β∗)
p(Uik|τ,U−ik,V , D) = T N (Uik|µUik, τUik)

p(Vjk|τ,U ,V −jk, D) = T N (Vjk|µVjk, τVjk)
T N is a truncated normal (Gaussian with zero density below x = 0). If

instead of random draws we use the mode, we get a MAP solution (iterated

conditional modes, ICM).

Fast inference – Variational Bayes
Variational Bayesian inference (VB) is an alternative to Gibbs sampling,

where we approximate the true posterior p(θ|D) with an approximation

q(θ) that is easier to compute. We make the mean-field assumption, so all

variables in our approximation are independent. We choose the posteriors

as follows:

q(τ ) = G(τ |α∗, β∗)
q(Uik) = T N (Uik|µUik, τUik)

q(Vjk) = T N (Vjk|µVjk, τVjk)
VB does not rely on random draws, instead solving an optimisation problem,

and has two advantages: it can convergence much faster, and does not

require additional draws to approximate the posterior.

Experiments
Methods NMF and NMTF: Gibbs, ICM, and VB; non-probabilistic NMF (Lee and Seung 2001); non-probabilistic NMTF (Yoo and Choi 2009).

Experiments: • Convergence speed on simulated data, and a drug sensitivity dataset (GDSC). • Missing values predictions test with varying fractions of

missing entries and noise levels.
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Columns 1-4: Convergence of algorithms on toy (NMF: 1, NMTF: 2) and GDSC drug sensitivity (NMF: 3, NMTF: 4) data, measuring training data fit

(MSE) across iterations (top) and time (bottom). Column 5-6: Missing values prediction performances (5) and noise test performances (6), measuring

average predictive performance on test set (MSE) for different fractions of unknown values and noise-to-signal ratios. Top: NMF, bottom: NMTF.

Conclusion
•We have introduced a faster inference algorithm for Bayesian nonnegative matrix fac-

torisation, using variational Bayesian inference, and shown that it offers superior rates of

inference. It is competitive with a MAP method, yet gives a full posterior approximation.

•We also introduced a Bayesian version of nonnegative matrix tri-factorisation, where

inference is even harder. The fast variational Bayesian approach opens up the application

of BNMTF to bigger datasets and future extensions.
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