Approximate Inference by Semidefinite Relaxations

Andrea Montanari
[with Adel Javanmard, Federico Ricci-Tersenghi, Subhabrata Sen]

Stanford University
December 11, 2015

What is this talk about?

SDP for Matrix/Graph estimation

The hidden partition model

Vertices $V,|V|=n, V=V_{+} \cup V_{-},\left|V_{+}\right|=\left|V_{-}\right|=n / 2$

$$
\mathbb{P}\{(i, j) \in E\}= \begin{cases}p & \text { if }\{i, j\} \subseteq V_{+} \text {or }\{i, j\} \subseteq V_{-} \\ q<p & \text { otherwise }\end{cases}
$$

Of course entries are not colored...

... and rows/columns are not ordered

Problem: Detect/estimate the partition

What is this talk about?

SDP for Matrix/Graph estimation

Exact phase transition(?)

Outline

(1) Background
(2) Near-optimality of SDP
(3) How does SDP work 'in practice'?
(4) Conclusion

Background

Statistical estimation

$$
\begin{aligned}
x_{0, i} & = \begin{cases}+1 & \text { if } i \in V_{+}, \\
-1 & \text { if } i \in V_{-},\end{cases} \\
\mathbb{P}\{(i, j) \in E\} & = \begin{cases}p & \text { if } x_{0, i}=x_{0, j}, \\
q<p & \text { otherwise. }\end{cases}
\end{aligned}
$$

Estimator $\widehat{\mathbf{x}} \in\{+1,-1\}^{n}$

$$
\operatorname{Overlap}_{n}(\widehat{\mathbf{x}})=\frac{1}{n} \mathbb{E}\left\{\left|\left\langle\widehat{\mathbf{x}}(G), x_{0}\right\rangle\right|\right\}
$$

Statistical estimation $(p=a / n, q=b / n)$

$$
\begin{aligned}
x_{0, i} & = \begin{cases}+1 & \text { if } i \in V_{+}, \\
-1 & \text { if } i \in V_{-},\end{cases} \\
\mathbb{P}\{(i, j) \in E\} & = \begin{cases}a / n & \text { if } x_{0, i}=x_{0, j}, \\
b / n & \text { otherwise. }\end{cases}
\end{aligned}
$$

Estimator $\widehat{\mathrm{x}} \in\{+1,-1\}^{n}$

$$
\operatorname{Overlap}_{n}(\widehat{\mathbf{x}})=\frac{1}{n} \mathbb{E}\left\{\left|\left\langle\widehat{\mathbf{x}}(G), x_{0}\right\rangle\right|\right\} .
$$

Information theory threshold

```
Theorem (Mossel, Neeman, Sly, 2012)
There is an estimator that achieves liminf n->\infty}\mp@subsup{|}{n=rlap}{n}(\hat{x})\geq\varepsilon>
if and only if }a+b>2\mathrm{ and
```


[Proves conjecture by Decelle, Krzakala, Moore, Zdeborova, 2011]

Information theory threshold

Theorem (Mossel, Neeman, Sly, 2012)

There is an estimator that achieves $\liminf _{n \rightarrow \infty} \operatorname{Overlap}_{n}(\widehat{\mathbf{x}}) \geq \varepsilon>0$ if and only if $a+b>2$ and

$$
\frac{a-b}{\sqrt{2(a+b)}}>1
$$

[Proves conjecture by Decelle, Krzakala, Moore, Zdeborova, 2011]

Computational threshold

- Dyer, Frieze 1989
- Condon, Karp 2001
- McSherry 2001
- Coja-Oghlan 2010

$$
p=n a>q=n b \text { fixed }
$$

$$
a-b \gg n^{1 / 2}
$$

$$
a-b \gg \sqrt{b \log n}
$$

$$
a-b \gg \sqrt{b}
$$

- Massoulie 2013 and Mossel, Neeman, Sly, 2013

Computational threshold

- Dyer, Frieze 1989
- Condon, Karp 2001

$$
\begin{aligned}
& p=n a>q=n b \text { fixed. } \\
& a-b>n^{1 / 2} \\
& a-b \gg \sqrt{b \log n} \\
& a-b \gg \sqrt{b}
\end{aligned}
$$

- Coja-Oghlan 2010
- McSherry 2001
- Massoulie 2013 and Mossel, Neeman, Sly, 2013

$$
\frac{a-b}{\sqrt{2(a+b)}}>1
$$

Computational threshold

- Dyer, Frieze 1989
- Condon, Karp 2001

$$
\begin{aligned}
& p=n a>q=n b \text { fixed. } \\
& a-b>n^{1 / 2} \\
& a-b \gg \sqrt{b \log n} \\
& a-b \gg \sqrt{b}
\end{aligned}
$$

- McSherry 2001
- Coja-Oghlan 2010
- Massoulie 2013 and Mossel, Neeman, Sly, 2013

$$
\frac{a-b}{\sqrt{2(a+b)}}>1
$$

What if I am not ingenious?

Maximum Likelihood

Posterior probability

Candidate partiton $\sigma \in\{+1,-1\}^{n}$

$$
\mathbb{P}\left(x_{0}=\sigma \mid G\right) \approx \frac{1}{Z(G)} \prod_{(i, j) \in E}\left\{a \mathbb{I}\left(\sigma_{i}=\sigma_{j}\right)+b \mathbb{I}\left(\sigma_{i} \neq \sigma_{j}\right)\right\} \mathbb{I}\left(\sum_{i=1}^{n} \sigma_{i}=0\right)
$$

Pairwise binary graphical model

Adjacency matrix

$$
A_{i j}= \begin{cases}1 & \text { if }(i, j) \in E, \\ 0 & \text { otherwise } .\end{cases}
$$

$$
\boldsymbol{A}=\left(A_{i j}\right)_{1 \leq i, j \leq n}
$$

Maximum likelihood

maximize
subject to

$$
\begin{aligned}
& \sum_{i, j=1}^{n} A_{i j} \sigma_{i} \sigma_{j} \\
& \sum_{i=1}^{n} \sigma_{i}=0 \\
& \sigma_{i} \in\{+1,-1\}
\end{aligned}
$$

Maximum likelihood

$$
\sigma_{i}= \begin{cases}+1 & \text { if } i \in V_{+} \\ -1 & \text { if } i \in V_{-}\end{cases}
$$

maximize

Maximum likelihood

$$
\sigma_{i}= \begin{cases}+1 & \text { if } i \in V_{+} \\ -1 & \text { if } i \in V_{-}\end{cases}
$$

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i, j=1}^{n} A_{i j} \sigma_{i} \sigma_{j} \\
\text { subject to } & \sum_{i=1}^{n} \sigma_{i}=0 \\
& \sigma_{i} \in\{+1,-1\}
\end{aligned}
$$

Lagrangian

$$
\begin{array}{ll}
\text { maximize } & \sum_{i, j=1}^{n} A_{i j} \sigma_{i} \sigma_{j}-\gamma\left(\sum_{i=1}^{n} \sigma_{i}\right)^{2} . \\
\text { subject to } & \sigma_{i} \in\{+1,-1\} .
\end{array}
$$

A good choice:

Lagrangian

$$
\begin{array}{ll}
\text { maximize } & \sum_{i, j=1}^{n} A_{i j} \sigma_{i} \sigma_{j}-\gamma\left(\sum_{i=1}^{n} \sigma_{i}\right)^{2} . \\
\text { subject to } & \sigma_{i} \in\{+1,-1\} .
\end{array}
$$

A good choice:

$$
\gamma=\frac{a+b}{2 n} \equiv \frac{d}{n}
$$

Centered adjacency matrix

$$
\begin{gathered}
A_{i j}^{\text {cen }}= \begin{cases}1-(d / n) & \text { if }(i, j) \in E, \\
-(d / n) & \text { otherwise. }\end{cases} \\
\boldsymbol{A}^{\text {cen }}=\boldsymbol{A}-\frac{d}{n} \mathbf{1} \mathbf{1}^{\top}
\end{gathered}
$$

Lagrangian

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\mathrm{cen}}, \boldsymbol{\sigma} \boldsymbol{\sigma}^{\top}\right\rangle, \\
\text { subject to } & \boldsymbol{\sigma} \in\{+1,-1\}^{n} .
\end{aligned}
$$

- $\operatorname{SDP}\left(A^{\text {cen }}\right)$ is a very natural convex relaxation

Lagrangian

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\mathrm{cen}}, \boldsymbol{\sigma} \boldsymbol{\sigma}^{\mathrm{T}}\right\rangle, \\
\text { subject to } & \boldsymbol{\sigma} \in\{+1,-1\}^{n} .
\end{aligned}
$$

- NP-hard
- $\operatorname{SDP}\left(\boldsymbol{A}^{\mathrm{cen}}\right)$ is a very natural convex relaxation

Relaxation

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\mathrm{cen}}, \boldsymbol{\sigma} \boldsymbol{\sigma}^{\mathrm{T}}\right\rangle, \\
\text { subject to } & \boldsymbol{\sigma} \in\{+1,-1\}^{n}
\end{aligned}
$$

$\operatorname{SDP}\left(A^{\mathrm{cen}}\right):$

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\text {cen }}, \boldsymbol{X}\right\rangle \\
\text { subject to } & \boldsymbol{X} \in \mathbb{R}^{n \times n}, \boldsymbol{X} \succeq 0 \\
& X_{i i}=1
\end{aligned}
$$

Estimator

- Compute principal eigenvector $\boldsymbol{v}_{1}(\boldsymbol{X})$
- Threshold it $\hat{\boldsymbol{x}}^{\mathrm{SDP}}(G)=\operatorname{sign}\left(\boldsymbol{v}_{1}(\boldsymbol{X})\right)$
- Randomized variation for proofs

This is really off-the-shelf

How well does it work?

Estimator

- Compute principal eigenvector $\boldsymbol{v}_{1}(\boldsymbol{X})$
- Threshold it $\hat{\boldsymbol{x}}^{\mathrm{SDP}}(G)=\operatorname{sign}\left(\boldsymbol{v}_{1}(\boldsymbol{X})\right)$
- Randomized variation for proofs

This is really off-the-shelf

How well does it work?

Near-optimality of SDP

Before we pass to SDP

- What's the problem with sparse graphs?
- What's the problem vanilla PCA?

Why PCA?

Ground truth

$$
x_{0, i}= \begin{cases}+1 & \text { if } i \in V_{+}, \\ -1 & \text { if } i \in V_{-} .\end{cases}
$$

Data $=$ RankOne + Wigner

Why PCA?

Ground truth

$$
x_{0, i}= \begin{cases}+1 & \text { if } i \in V_{+}, \\ -1 & \text { if } i \in V_{-} .\end{cases}
$$

Data $=$ RankOne + Wigner

$$
\begin{aligned}
& \frac{1}{\sqrt{d}} A^{\mathrm{cen}}=\frac{\lambda}{n} x_{0} x_{0}^{\top}+W, \quad \lambda \equiv \frac{a-b}{\sqrt{2(a+b)}} \\
& E\left\{W_{i j}\right\}=0, \quad \mathbb{E}\left\{W_{i j}^{2}\right\} \in\left\{\frac{a}{d n}, \frac{b}{d n}\right\} \approx \frac{1}{n} .
\end{aligned}
$$

The right parametrization

$$
d=\frac{a+b}{2}, \quad \lambda=\frac{a-b}{\sqrt{2(a+b)}}
$$

Naive PCA

$$
\hat{\mathbf{x}}^{\mathrm{PCA}}\left(\boldsymbol{A}^{\mathrm{cen}}\right)=\sqrt{n} \boldsymbol{v}_{1}\left(\boldsymbol{A}^{\mathrm{cen}}\right) .
$$

Does it work?

$$
\frac{1}{\sqrt{d}} A^{\text {cen }}=\frac{\lambda}{n} x_{0} x_{0}^{\top}+W
$$

Naive idea:

$$
\|\boldsymbol{W}\|_{2} \leq \text { const., } \quad\left\|\frac{\lambda}{n} x_{0} x_{0}^{\top}\right\|_{2}=\lambda \Rightarrow \text { Works for } \lambda=O(1)
$$

Does it work?

$$
\frac{1}{\sqrt{d}} A^{\mathrm{cen}}=\frac{\lambda}{n} x_{0} x_{0}^{\top}+W
$$

Naive idea:

$$
\|\boldsymbol{W}\|_{2} \leq \text { const., } \quad\left\|\frac{\lambda}{n} x_{0} x_{0}^{\top}\right\|_{2}=\lambda \Rightarrow \text { Works for } \lambda=O(1)
$$

Wrong!

Spectral relaxation bad in the sparse regime!

Theorem (Krivelevich, Sudakov 2003+Vu 2005)
With high probability,

$$
\lambda_{\max }\left(A^{c e n} / \sqrt{d}\right)= \begin{cases}2(1+o(1)) & \text { if } d \gg(\log n)^{4} \\ C \sqrt{\log n /(\log \log n)}(1+o(1)) & \text { if } d=O(1)\end{cases}
$$

Example: $d=20, \lambda=1.2, n=10^{4}$

Example: $d=3, \lambda=1.2, n=10^{4}$

Why should SDP work better?

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\text {cen }}, \boldsymbol{X}\right\rangle \\
\text { subject to } & \boldsymbol{X} \in \mathbb{R}^{n \times n}, \boldsymbol{X} \succeq 0 \\
& X_{i i}=1
\end{aligned}
$$

Recall the ultimate limit

$\mathrm{G}(n, d, \lambda)$ graph distribution with parameters

$$
d=\frac{a+b}{2}>1, \quad \lambda=\frac{a-b}{\sqrt{2(a+b)}}
$$

Theorem (Mossel, Neeman, Sly, 2012)
If $\lambda<1$, then

$$
\lim \sup _{n \rightarrow \infty}\|\mathrm{G}(n, d, 0)-\mathrm{G}(n, d, \lambda)\|_{\mathrm{TV}}<1
$$

If $\lambda>1$, then

$$
\lim _{n \rightarrow \infty}\|\mathrm{G}(n, d, 0)-\mathrm{G}(n, d, \lambda)\|_{\mathrm{TV}}=1
$$

SDP has nearly optimal threshold

Theorem (Montanari, Sen 2015)

Assume $G \sim \mathrm{G}(n, d, \lambda)$.
If $\lambda \leq 1$, then, with high probability,

$$
\frac{1}{n \sqrt{d}} \operatorname{SDP}\left(\boldsymbol{A}_{G}^{c e n}\right)=2+o_{d}(1)
$$

If $\lambda>1$, then there exists $\Delta(\lambda)>0$ such that, with high probability,

$$
\frac{1}{n \sqrt{d}} \operatorname{SDP}\left(\boldsymbol{A}_{G}^{c e n}\right)=2+\Delta(\lambda)+o_{d}(1)
$$

Consequence

Corollary (Montanari, Sen 2015)
Assume $\lambda \geq 1+\varepsilon$. Then there exists $d_{0}(\varepsilon)$ and $\delta(\varepsilon)>0$ such that the randomized SDP-based estimator achieves, for $d \geq d_{0}(\varepsilon)$,

$$
\lim _{n \rightarrow \infty} \inf _{n} \mathrm{E}\left\{\operatorname{Overlap}_{n}\left(\hat{x}^{S D P}\right)\right\} \geq \delta(\varepsilon) .
$$

Earlier/related work

Optimal spectral tests

- Massoulie 2013
- Mossel, Neeman, Sly, 2013
- Bordenave, Lelarge, Massoulie, 2015

SDP, $d=\Theta(\log n)$

- Abbe, Bandeira, Hall 2014
- Hajek, Wu, Xu 2015

SDP, detection

- Guédon, Vershynin, 2015 (requires $\lambda \geq 10^{4}$, very different proof)

How does SDP work 'in practice'?

Thresholds

- $\lambda_{c}^{\text {opt }}(d) \equiv$ Threshold for optimal test
- $\lambda_{c}^{\text {SDP }}(d) \equiv$ Threshold for SDP-based test

What we know

- $\lambda_{c}^{\text {opt }}(d)=1$
[Mossel, Neeman, Sly, 2013]

How big is the $o_{d}(1)$ gap?

What we know

- $\lambda_{c}^{\text {opt }}(d)=1$
[Mossel, Neeman, Sly, 2013]
- $\lambda_{c}^{\mathrm{SDP}}(d)=1+o_{d}(1)$
[Montanari, Sen, 2015]

How big is the $o_{d}(1)$ gap?

Simulations: $d=5, N_{\text {sample }}=500$ (with Javanmard and Ricci)

SDP estimator $\hat{\boldsymbol{x}}^{\mathrm{SDP}} \in\{+1,-1\}^{n}$

$$
\operatorname{Overlap}_{n}(\widehat{\mathbf{x}})=\frac{1}{n} \mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{x}}^{\mathrm{SDP}}(G), x_{0}\right\rangle\right|\right\} .
$$

Simulations: $d=5, N_{\text {sample }}=500$

$$
\lambda_{c}^{\mathrm{SDP}}(d=5) \approx 1
$$

Simulations: $d=10, N_{\text {sample }}=500$

$$
\lambda_{c}^{\mathrm{SDP}}(d=10) \approx 1
$$

Simulations: $d=10, N_{\text {sample }}=500$

Can we estimate $\lambda_{c}^{S D P}(d)$ from data?

$\lambda_{c}^{\mathrm{SDP}}(d), N_{\text {sample }} \geq 10^{5} \quad(10$ years CPU time $)$

- Dots: Numerical estimates
- Line: Non-rigorous analytical approximation (using statistical physics)
- At most 2% sub-optimal!

One last question

Is this approach robust to model miss-specifications?

An experiment

- Select $S \subseteq V$ uniformly at random. with $|S|=n \alpha$.
- For each $i \in S$, connect all of its neighbors.

An experiment

- Solid line:SDP
- Dashed line: Spectral
(Non-backtracking walk [Krzakala, Moore, Mossel, Neeman, Sly, Zdeborova, Zhang, 2013])

Conclusion

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself, . . .]
- Little known about 'sharp SDP properties' and SDP vs PCA

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself,
- Little known about 'sharp SDP properties' and SDP vs PCA

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself, ...]
- Little known about 'sharp SDP properties' and SDP vs PCA

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself, ...]
- Little known about 'sharp SDP properties' and SDP vs PCA

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself, ...]
- Little known about 'sharp SDP properties' and SDP vs PCA

Thanks!

