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igorithm 1 OLSS(D. . 7 M. {n; ;1)

Random shuffle samples in D.
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» Sparse learning is important to real applications with high dimensional data. Imtlalize for each feature j: p; = 0.9, p1; = po; = po,; = 0,015 = vy; = vy, = 10°.
. . . repea
> Too man){ features — complicated model — huge training data — expensive Collect a mini-batch of samples B; with size M, where B;r are B, denote the positive and
computational cost N | - | o negative samples, and b;; and b;; denote the appearance counts of feature j in B;" and B; .
- S_maII models are critical to real-time applications, such as online bidding for Ads. Calculate the approximate likelihood for each sample in B; to obtain {A (w;|1¢, v;¢)};een,
displaying. Update the Gaussian terms for the average-likelihoods:
» Spike-and-slab prior is the golden standard for Bayesian sparse learning; compared with v;j_l % % S ept vj_tl 4 nj,,;b; v;j*) Z% ) ZS: et Mt ”}:;bﬁ /;j?tg’
popular L; regularization approaches, it has an appealing selective shrinkage effect. Suppose IR z e ) b S
for each feature j, we have a weight w; and the spike-and-slab prior over w; is vy, Y- vy ey 2 L Lty i iter
J g { P P d j n; teB; “jt n; j V5 n teB vy ns v,
p(s)) = Bern(sj|po) = pgj(l _ po)l—sj7 p(wjls;) = sN(w;[0, 7o) + (1 — 5,)5(w)) If.T mini-batches have been processed, update {p;, h1;,v1;}; for the approximate prior terms.
5 f until all samples 1n D 1is passed.
where 0(-) is a Dirac-delta function. ~1 —1 N
() return g(w,s) = [ [, N (w;|u;, vj)Bern(s;|a;), where v; = (vlj + n;rv;rj + 1 vy, ) .

» Spike-and-slab prior is less popular, mainly due to the computational hurdle for posterior
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inference, especially for large data—massive samples, very high dimensions. Hj 9( + T T
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), a; =0 (o " (po) + o (p;)) (o(-) is the logitic function).

Experiments

OLSS: Online Spike-and-slab Inference

» Real CTR prediction task on Yahoo! Display ads platform.

» We focus on linear classification model:
N » Training data: click logs between 07/15/2016 and 07/21/2016

d
p(D,w,s|pg, 7o) = H Bern(sj‘po)(sjj\[(m‘O’ 70) + (1 — Sj)(s(wj)) H cb(ynwg)“(n) » Testing data: click logs in 07/22/2016, 07/23/2016 and 07/24/2016.
j=1 n=1 » Feature number: 204, 327.
where D = {(x1, 1), ..., (Xn, ¥n)} are data, w are classification weights, s are selection » Training and testing sizes: 1.8M, 133.7M, 116.0M, and 110.2M.
indicators, and ®(-) is the CDF of standard Gaussian distribution. » Competing methods: online logistic regression in Vowpal Wabbit (VW), FTRL-proximal
» We use the stochastic expectation propagation framework. (FTRLp).
» Expectation propagation (EP). The general form of a joint distribution is » Sparsity achievement.

p(8,D) = po(6) | | p(26).

Table: The number of selected features v.s. the setting of pp.

| | p 08 05 04 03 01 103 10°° 107
EP approximates p(6, D) with feature number | 204.080 53827 5591 3.810 2.174 1004 663 504
g(0) fb(g)an(g). ratio (%) | 99.9% 26.3% 2.7% 1.9% 1.1% 0.5% 0.3% 0.2%
n

| » Predictive performance with different sparsity levels.
EP maintains and iteratively refines each approximate terms f; with four steps: (1)

calculating the calibrating distribution, q_;(0) o< q(0)/f(80); (2) constructing a tilted T o o S B N D;; ““““““ °
distribution t;(0) o< q_;(0)p(z:|@); (3) projecting t; back into the exponential family, T — % - [ Y B
q*(0) o proj(tj(@)), via moment matching; (4) updating the f: f*V(0) x q*(0)/q_;(0). chie SoLss % = S A &
» Stochastic expectation propagation (SEP): using one average likelihood to summarize 0785 W ) . X 0.7}
the data. I R I . - -
N 2 16 12 0.8 04 0.1 2 16 12 08 04 0.1 2 18 12 08 04 0.1
CI(H) X fO(H)fa(H) Feature Number  «10° %105 Feature Number «10° Feature Number
SEP sequentially process data samples and update the average likelihood £, in an online (2) 07/22 (b) 07/23 (c) 07724
fashion: » Usage of the selected features. We used 504 features selected by OLSS and trained a

£(0)™ = (£(6)£,(0)" )"

The corresponding updates in terms of the natural parameters are

nonlinear classification model, Gradient Boosting Tree (GBT).
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» Our approximation for spike-and-slab models: Q 76 ]
~ We approximate the prior term, s, (w;]0, 79) + (1 — s;)0(w;), with )
Bern(s;| )N (wj 11yj, vay)- II II
» We use two average-likelihood terms, 7."(w;) and £~ (w;/), defined by il EE EE

f,r(wy) = Hje/N(M/jLu;_j? VZ) and f,"(w)) = Hje/N(Wsz_ja Vz?) for the positive and

negative samples, respectively. GBT outperformed OLSS on 504 features and VW on the entire 204, 327 features,

» Fully factorization form:
) among all the three test datasets.

+

g(w,s) H Bern(s;| po) Bern(s;| o)) N (w1, vip)N (wj| 3, vai )™ N (wj ;. sz)nj—

where nj+ and n; are the appearance counts of feature j in positive and negative samples.

» The advantages: » Examination on millions of features, which are more often used in industry.
» Multiple average likelihoods can summarize the data distributions more accurately. > Online A/B test on various sample weights settings.
» Easy to deal with categorical features with high cardinality. » Distributed, asynchronous stochastic spike-and-slab inference.

» Can adjust sample weights, e.g., for positive and negative samples, by setting nj+ and n;.
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