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Motivation \

e There has recently been significant interest in utilizing max-margin based discriminative
Bayesian models for various applications

e Most approaches build on a Bayesian formulation of the SVM
e State-of-the-art inference methods are either slow or rely on point estimates

e We propose a fast inference scheme based on variational inference for approximating the full
posterior

e Our method leads to a fast auto-tuned SVM and gives an uncertainty prediction

The Bayesian SVM

oLet D = {x;,y;};' | be n observations, where z; € R? is a data point with corresponding label
Yi € {_17 1}

The Support Vector Machine (SVM)
e The SVM consists of finding the optimal score function f by solving

g min > max (1 —y;f(z;),0) + YR (f) (1)
Y=l

e I? Is a regularizer function and v a hyperparameter

The Bayesian Linear SVM (Linear BSVM)

e We follow the approach of [1] to develop a Bayesian formulation of the linear SVM
e We introduce latent variables A := (Ay,..., \,) " (with improper prior)

e The (proper) full conditionals of this model are given by

BIA S, D ~N(BZA 1 +1), B),
]

ewhere Z=XY and B~ = ZA=1ZT + =71 A = diag()\), Y = diag(y)

The Bayesian Nonlinear SVM (Kernel BSVM)

e [2] developed a kernelized version of the linear model (using ideas of GPs)
e We assume that a continuous decision function f(x) is drawn from a zero-mean GP
e The full conditionals of the model are

FIAD ~N(CY(AH), O),
1

NilB,D; ~ GLG (2, L, (1 - yz’fi>2>

ewhere O~ ! = A1 + K~ 1 and K is the kernel matrix

Inference

Variational Inference (VI)

VI for the Linear BSVM
¢ We follow the mean field approach and choose the variational distributions:

o) = 6T6( Loy, al) = Ny <) @

e where a; > 0, u € RY, ¢ € RYX? (positive definite) are free parameters
e The coordinate ascent (CAVI) updates are

i = (1 -z} p)* + 2} ¢z,

Lo 1) !
g“:(ZA 2/ 4+ X ) (5)
p=CZa I+ 1)

e where A = diag(a) and a = (o) 1<i<n

VI for the Kernel BSVM

e We choose the variational distributions ¢(\), ¢(f) similar to the linear case to be in the same
family as the full conditionals (3)

e The coordinate ascent updates (CAVI) are

i = (1= yipi)” + G
1 -1
(= (a4 K (6)
p=CY(a2 4 1)

Stochastic Variational Inference (SVI)

e The variational infernce scheme for the linear BSVM can be directly extended to an SVI
scheme (we use an adaptive learning rate schedule [3])

e This leads to great speed up (see experiments)

e The kernel BSVM does not have a set of global variables — therefore, SVI cannot be directly
applied

e Solution: Use inducing point GP with global sparse prior [4] that would lead to an appropriate
model for SVI (this is future work)

Beyond the Standard SVM \

Reformulating the SVM as probabilistic models lets us apply attractive Bayesian methods such
as:

e Computing class membership probabilities (uncertainty in the prediction)
e Automated hyperparameter search

Class Membership Probabilities

e Integrating over the approximate posterior obtained by our inference method lets us compute
the class membership probability

Linear BSVM:  p(ys = 1|4, D) = & s (7)
P h ZCIC*ZC*+1

k*K—llu*
ks + ki (K7ICK=1 = K1) by + 1

Kernel BSVM:  p(yx = 1|z, D) ~ & ( (8)

Hyperparameter Optimization

e We estimate the hyperparameters from the data by maximizing the fitted variational lower
bound of the marginal likelihood L(h) < p(y|X, h)

e We update the hyperparameters simultaneously with the variational parameters and add a
hyperparameter optimization step after the variational updates

R R AV AN NG N ) (9)

Experiments \

Linear BSVM: Prediction Performance and Time

e Synthetic data set with known underlying model parameter 3
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Kernel BSVM: Prediction Performance and Time

e Average prediction error (in %) from 10-fold cross validation:
Data set N d VI-BSVM LibSVM GPC

Sonar 208 60 12.5 13.5 19.5
Crabs 200 7 1.0 1.0 3.1
Pima /68 8 22.8 247 22.8
USPS 3vs5 1540 256 2.0 1.6 2.3

e The state of the art MCMC based inference method for the kernel BSVM in [2] takes 1200
seconds on the USPS dataset with prediction error 1.49% (reported by the authors)

e Our method only takes 15 seconds while having only a slightly worse prediction error

Linear and Kernel BSVM: Automated Model Selection

o (Left) We estimate the regularization constant of the linear BSM and compare against grid
search (grid of 1000 points) for the standard SVM

¢ (Right) We estimate the length scale parameter of the RBF kernel of the kernel BSVM
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Conclusion and Forthcoming Research

e We proposed a new inference method for the Bayesian SVM that scales to large datasets
and allows for approximating the full posterior

e We can automatically tune the hyperparameters of the SVM and compute the uncertainty in
the predictions

e In future work we aim to develop an SVI method for the kernel BSVM applying the concept of
GPs for big data [4]
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