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Motivation

• There has recently been significant interest in utilizing max-margin based discriminative
Bayesian models for various applications
•Most approaches build on a Bayesian formulation of the SVM
• State-of-the-art inference methods are either slow or rely on point estimates
•We propose a fast inference scheme based on variational inference for approximating the full

posterior
•Our method leads to a fast auto-tuned SVM and gives an uncertainty prediction

The Bayesian SVM

• Let D = {xi, yi}ni=1 be n observations, where xi ∈ Rd is a data point with corresponding label
yi ∈ {−1, 1}

The Support Vector Machine (SVM)

• The SVM consists of finding the optimal score function f by solving

arg min
f (x)

n∑
i=1

max (1− yif (xi), 0) + γR (f ) (1)

•R is a regularizer function and γ a hyperparameter

The Bayesian Linear SVM (Linear BSVM)

•We follow the approach of [1] to develop a Bayesian formulation of the linear SVM
•We introduce latent variables λ := (λ1, . . . , λn)> (with improper prior)
• The (proper) full conditionals of this model are given by

β|λ,Σ,D ∼ N (BZ(λ−1 + 1), B),

λi|β,Di ∼ GIG
(

1

2
, 1, (1− yix>i β)2

)
(2)

•where Z = XY and B−1 = ZΛ−1Z> + Σ−1, Λ = diag(λ), Y = diag(y)

The Bayesian Nonlinear SVM (Kernel BSVM)

• [2] developed a kernelized version of the linear model (using ideas of GPs)
•We assume that a continuous decision function f (x) is drawn from a zero-mean GP
• The full conditionals of the model are

f |λ,D ∼ N (CY (λ−1), C),

λi|β,Di ∼ GIG
(

1

2
, 1, (1− yifi)2

)
(3)

•where C−1 = Λ−1 + K−1 and K is the kernel matrix

Inference

Variational Inference (VI)

VI for the Linear BSVM

•We follow the mean field approach and choose the variational distributions:

q(λi) ≡ GIG(
1

2
, 1, αi), q(β) ≡ N (µ, ζ) (4)

•where αi ≥ 0, µ ∈ Rd, ζ ∈ Rd×d (positive definite) are free parameters
• The coordinate ascent (CAVI) updates are

αi = (1− zTi µ)2 + zTi ζzi,

ζ =
(
ZA−

1
2ZT + Σ−1

)−1

µ = ζZ(α−
1
2 + 1)

(5)

•where A = diag(α) and α = (αi)1≤i≤n

VI for the Kernel BSVM

•We choose the variational distributions q(λ), q(f ) similar to the linear case to be in the same
family as the full conditionals (3)
• The coordinate ascent updates (CAVI) are

αi = (1− yiµi)2 + ζii

ζ =
(
A−

1
2 + K−1

)−1

µ = ζY (α−
1
2 + 1)

(6)

Stochastic Variational Inference (SVI)
• The variational infernce scheme for the linear BSVM can be directly extended to an SVI

scheme (we use an adaptive learning rate schedule [3])
• This leads to great speed up (see experiments)
• The kernel BSVM does not have a set of global variables – therefore, SVI cannot be directly

applied
• Solution: Use inducing point GP with global sparse prior [4] that would lead to an appropriate

model for SVI (this is future work)

Beyond the Standard SVM

Reformulating the SVM as probabilistic models lets us apply attractive Bayesian methods such
as:
•Computing class membership probabilities (uncertainty in the prediction)
• Automated hyperparameter search

Class Membership Probabilities

• Integrating over the approximate posterior obtained by our inference method lets us compute
the class membership probability

Linear BSVM: p(y∗ = 1|x∗,D) ≈ Φ

(
x>∗ µ

∗

x>∗ ζ∗x∗ + 1

)
(7)

Kernel BSVM: p(y∗ = 1|x∗,D) ≈ Φ

(
k∗K−1µ∗

k∗∗ + k>∗
(
K−1ζ∗K−1 −K−1

)
k∗ + 1

)
(8)

Hyperparameter Optimization

•We estimate the hyperparameters from the data by maximizing the fitted variational lower
bound of the marginal likelihood L(h) ≤ p(y|X, h)

•We update the hyperparameters simultaneously with the variational parameters and add a
hyperparameter optimization step after the variational updates

h(t) = h(t−1) + ρ̃t∇hL(α(t−1), µ(t−1), ζ(t−1), h) (9)

Experiments

Linear BSVM: Prediction Performance and Time

• Synthetic data set with known underlying model parameter β

Kernel BSVM: Prediction Performance and Time

• Average prediction error (in %) from 10-fold cross validation:

Data set N d VI-BSVM LibSVM GPC
Sonar 208 60 12.5 13.5 19.5
Crabs 200 7 1.0 1.0 3.1
Pima 768 8 22.8 24.7 22.8
USPS 3vs5 1540 256 2.0 1.6 2.3

• The state of the art MCMC based inference method for the kernel BSVM in [2] takes 1200
seconds on the USPS dataset with prediction error 1.49% (reported by the authors)
•Our method only takes 15 seconds while having only a slightly worse prediction error

Linear and Kernel BSVM: Automated Model Selection

• (Left) We estimate the regularization constant of the linear BSM and compare against grid
search (grid of 1000 points) for the standard SVM
• (Right) We estimate the length scale parameter of the RBF kernel of the kernel BSVM

Conclusion and Forthcoming Research

•We proposed a new inference method for the Bayesian SVM that scales to large datasets
and allows for approximating the full posterior
•We can automatically tune the hyperparameters of the SVM and compute the uncertainty in

the predictions
• In future work we aim to develop an SVI method for the kernel BSVM applying the concept of

GPs for big data [4]
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