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Abstract

We introduce a new approach for performing accurate and computationally effi-
cient posterior inference for Gaussian Process regression problems that exploits the
combination of pseudo-point approximations and approximately circulant covari-
ance structure. We argue mathematically that the new technique has substantially
lower asymptotic complexity than traditional pseudo-point approximations and
demonstrate empirically that it returns results that are very close to those obtained
using exact inference.

1 Introduction

Exact inference in Gaussian Process (GP) regression for large data sets is rendered infeasible by the
poor scalability of the method with data set size [1]. This has motivated the development of a large
selection of techniques that exploit specific properties of a problem to accelerate the computations
required for inference. For example, it is often the case that a rather simple posterior process results
from a very large amount of data. Pseudo-point (“sparse”) GP approximations (see [2] and [3] for
reviews of the available techniques) exploit this property elegantly using a small pseudo-dataset
to summarise the true dataset. However, these methods return a terrible approximation if too few
pseudo-data are used. This becomes problematic for large complicated problems that necessitate the
use of a large number of pseudo-data.

Such large scale problems can be rendered tractable by the presence of special structure in the
covariance matrix [4]. For example, if observations are on a regular grid and the covariance function
is stationary then the covariance matrix is Toeplitz, and therefore approximately circulant [5], which
can be exploited to accelerate inference substantially. The fundamental issue with these methods is
their limited domain of applicability requiring special input locations (regular sampling) and special
covariance structure that is inherited by the posterior (stationarity).

This paper examines a new approach to the combination of pseudo-point methods and those which
exploit special structure, with the goal of obtaining lower asymptotic complexity than pseudo-point
methods whilst placing as few restrictions as possible on the types of problems that can be tackled.
This work is similar to existing work [6, 7, 8] in that we propose to place the pseudo-points on a
regular grid, but dissimilar in the approach taken to exploiting this to accelerate inference. We now
briefly review pseudo-point and circulant GP approximations and develop the Pseudo-Circular GP
(PCGP) approximation.

2 Pseudo-Point GP Approximation

The variational pseudo-point GP (VFE) approximation [9] is arguably the state-of-the-art approx-
imation method. Its properties are examined in [10], and is rederived from the perspective of the
KL divergence between stochastic processes in [11]. In the case of regression, the optimal posterior
distribution over the pseudo-data fZ is shown to be a multivariate normal distributionN (fZ |µq,Σq)



with parameters
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where KZ,Z , KD,Z , β−1 and y are the prior pseudo-data covariance, cross-covariance between
observed data and pseudo-data, the observation noise and observations respectively. Furthermore the
expression for the Evidence Lower Bound (ELBO) at this optimum is
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This technique has asymptotic complexity O
(
NM2 +M3

)
, owing to the matrix multiplication

KZ,DKD,Z and the Cholesky decomposition required to compute the posterior covariance and KL
divergence.

3 Circulant GP Approximation

An alternative approach to GP approximation is to utilise special structure. The circulant GP (CGP)
approximation can be applied when the data are regularly sampled and the covariance function is
stationary, k (x, y) := k (x− y). The method works by transforming the problem from the original
Euclidean input space to a ring such that

k̂ (∆) := k ([(∆ + d) mod 2d]− d) , d := (u− l)/2. (1)

The covariance matrix resulting from evaluation of k̂ at each pairing of the input locations xn =
n(u− l)/N for n ∈ {0, ..., N−1} will be exactly circulant. As the ring, and therefore u− l, becomes
large the bias introduced into log marginal likelihood computations becomes minimal [12, 5].

Being circulant, this covariance matrix can be expressed as K = UΓU †, where U ∈ CN×N is the
Discrete Fourier Transform (DFT) matrix, defined as Um,n := N−

1
2 e−2πimn/N , and Γ = diag (γ) is

the diagonal matrix whose diagonal γ is the DFT of the first row of K. This means that log |K| =∑N
n=1 log γn can be computed in O (N logN) time by using the Fast Fourier Transform (FFT) to

obtain γ. Furthermore the quadratic form xK−1xT = xUΓ−1U †xT =
∑N
n=1 γ

−1
n |Ux|

2
n can be

computed in O (N logN) time by efficiently computing Ux with the FFT.

4 Pseudo-Circular GP Approximation

The Pseudo-Circular GP (PCGP) approximation combines the discussed approximations so that
non-regularly sampled input data can be approximated using a large number of regularly spaced
pseudo-data. This is achieved by placing the pseudo-data on a regular grid which extends outside
the domain on which we observe data and circularising the covariance function. KZ,Z is rendered
circulant and, consequently, K−1

Z,Z and |KZ,Z | inexpensive to compute. µq can be found from the
ELBO efficiently using Conjugate Gradients (CG) [13] as L is quadratic in µq ,
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The most expensive computation required for CG is (βK−1
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−1
Z,Z +K−1

Z,Z)µq, which
can be performed efficiently by summing βK−1

Z,ZKZ,DKD,ZK
−1
Z,Zµq and K−1

Z,Zµq, which require
O (NM) and O (M logM) operations respectively to leading order.

Σq is more problematic as it contains M(M + 1)/2 parameters, meaning that an arbitrary positive

definite matrix quite clearly cannot be used. We propose to use Σq := K
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lower-triangular band-diagonal matrix V � 0, with bandwidth b, and K
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V can be interpreted as the Cholesky decomposition of a positive definite band-diagonal matrix.
Critically, this parameterisation ensures that the variational posterior can be non-stationary. The terms
in L dependent upon Σq
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can now be computed efficiently. The matrix multiplication A := KD,ZKZ,Z can be computed
in O (NM(logM + b)) time, the multiplication B := AV can be performed in O (NMb) time,
and tr

(
BBT

)
=
∑M,N
m,n=1Bm,n can also be computed in O (MN) time. Furthermore, since V is

lower-triangular log |V | =
∑M
m=1 logLm,m. These savings are significant over the standard VFE

approach.

Under the parametrisation the prior is recovered when V = I , and the posterior covariance is reduced
globally by setting elements of V less than 1. This parametrisation can be thought of as decorrelating
KZ,Z using a band-diagonal matrix, rather than attempting to construct the posterior from scratch
using a band-diagonal matrix. Therefore, although V is band-diagonal, the posterior covariance
approximation is dense. ELBO evaluation now has O (NM(b+ logM)) asymptotic complexity,
however, it is not clear how to solve directly for V (or equivalently for W := V V T ) owing to
the band-diagonal constraint except in the case that V is diagonal. As such, the gradient-based
optimisation method Adagrad [14] is used to find the optimal solution for b > 0.

5 Parametrisation Experiments

We examine the performance of the PCGP approximation as the bandwidth b is varied on a toy
problem in which 750 data are drawn from a GP with an Exponentiated Quadratic covariance function
with length scale l2 = 1.0 and variance σ2 = 1.0 under observation noise β−1 = 0.1. Figure 1
displays this toy data set, along with the mean and marginal variance for the exact GP posterior
and several band-widths with M = 50 pseudo-data. This clearly demonstrates the reasonable
performance of a diagonal V and the improvements attained by increasing the bandwidth.
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Figure 1: Mean and marginal variances for the toy problem. The KL divergence between each
approximation and the exact solution is displayed in the appropriate legend entry. Owing to the
independence of the mean optimisation on the bandwidth of V , the means recovered for bandwidth
b = 0, 2, 4 are identical and, as M = 50 is sufficient to represent the function accurately over the
input domain chosen, are indistinguishable from the true posterior mean. The posterior covariance for
band width b = 0 (diagonal V ) does a reasonable job of recovering the posterior, although appears to
underestimate the marginal statistics in short regions of high posterior variance. Bandwidths b = 2, 4
converge to the posterior marginals more convincingly.

Figure 2 shows the performance of the proposed PCGP approximation for a range of bandwidths
b and pseudo-data counts M . The left hand image shows that the performance for small M or b
is relatively poor, however, the performance quickly improves to yield close to 0 KL divergence
between the approximation and true posterior for roughly M = 40, b = 3.

A moderately large experiment with M = 104 pseudo-data and N = 2 × 104 observations was
conducted on audio sub-band data for bandwidth b = 0. Table 3 shows that at this scale, the RMSE for
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Figure 2: (Left) The KL divergence achieved after 1000 iterations of Adagrad for a range of band
widths and numbers of pseudo-data. (Right) The M = 50 column of the image on the left, shown
for clarity. Performance decreases when pseudo-data are too close together for too narrow a band
width, as for b = 0, M = 70, because the difference between prior and posterior covariance cannot
be represented. Highlighted point (circled) correspond to the approximations shown in figure 1.

both in and out of training domain data is the same for VFE and PCGP to within a reasonable tolerance.
However, PCGP achieves this performance in almost half the time taken by VFE, with reasonable
recovery of the posterior marginal variance as shown in figure 3. Note also that experiments involving
M > 104 quickly become infeasible for VFE due to the O

(
M2
)

memory requirements, whereas
PCGP can handle a very large number of pseudo-data as the memory requirement is linear in M .
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Method Time RMSE RMSE
(s) (in) (out)

PCGP 603 9.03× 10−3 1.77
VFE 1045 9.02× 10−3 1.77

Figure 3: Results on audio sub-band data comprising N = 20000 irregularly sampled observations.
Inference was undertaken using M = 10000 pseudo-data. The plots show a small section of the
audio sub-band data with a region of missing data. 50 observations removed between t = 1.44 and
t = 1.46 form a small held-out data set in this case. The reconstruction results are shown in the table.
Note despite the narrow band-width b = 0, the recovered marginal variances are very similar between
the PCGP and VFE approximations.

6 Conclusion and Future Work

The long term aim of this work is to intelligently embed special covariance structure in pseudo-point
approximations to scale GP models to large complicated problems. The Pseudo-Circular GP (PCGP)
approximation is an efficient method in this vein for performing approximate inference in a univariate
GP regression task. PGCP can in principle be used in conjunction with any stationary covariance
function, or non-stationary covariance function of the form k (x, y) = k̂ (g (x) , g (y)) for some
stationary covariance function k̂ by placing the pseudo-data regularly in the space mapped to by g.
PCGP also generalises to arbitrary likelihood functions, such as those used for classification.

The lack of efficient implementations for particular operations involving band-diagonal matrices,
notably matrix-matrix multiplication, currently hinders the performance of this method in practice.
Furthermore, the sparsity induced by the local nature of pseudo-points is not currently exploited
to handle cross-covariances efficiently. To achieve truly linear scaling in N this will need to be
addressed.
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