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Given a probabilistic model p(x , θ), the variational approximation q(θ|λ)
for the posterior p(θ|x) is obtained by maximizing the evidence lower
bound (ELBO)

L(x , λ) =
∫

q(θ|λ) log
p(x , θ)
q(θ|λ)

dθ.

Direct optimization of the loss is difficult, but re-parameterizing the
approximation using

q(θ|λ) = 1
|C|

ϕ(C−1(θ − µ))

allows re-writing the ELBO as

L(x , µ,C) =

∫
ϕ(z) log

p(x ,Cz + µ)|C|
ϕ(z)

δz,

where the integral is now over a standard distribution ϕ(z) that does not
depend on the parameters λ [1]. Monte Carlo approximation now makes
gradient-based optimization possible.

A practical learning algorithm:
1. Take a mini-batch of data points x
2. Randomly sample M values zm from ϕ(z)
3. Convert zm into θm using θm = f (zm) = Czm + µ

4. Automatically differentiate ∇θ log p(x , θ) and evaluate it at θm

5. Update the variational parameters:

µt+1 = µt + γ
1
M

M∑
m=1

∇θ log p(x , θm)

Ct+1 = Ct + γ
1
M

M∑
m=1

(∇θ log p(x , θm)× zm + 1/C)

Beyond the basic algorithm:
▶ Constrained parameters handled via transformations
▶ Re-parameterization can be generalized for other distributions
▶ Stochastic average gradients (SAG) [2] instead of SGD; compute

running average of gradients over the mini-batches
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Importance-Sampled Stochastic Average Gradient (I-SAG)
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Core idea:

During optimization, we iteratively draw samples θm from the
approximation and evaluate the gradient of log p(x , θ) for those. This is
where most of the computation goes.

When visiting a data point (or mini-batch) again, we already know the
gradient computed for some θm, which could have been drawn from the
current approximation as well. Can we re-use the gradients
somehow?

Requires storing the gradients for each mini-batch visited, similar to what
is needed to compute stochastic average gradients [2]. This means we
can just as well combine both techniques.

Importance sampling: Tells how an expectation, here the gradient, can
be estimated with samples drawn from a different distribution:

E[∇λ log p(x , θ)] ≈
M∑

m=1

wm∇θm log p(x , θm)∇λf (zm, λ)

wm =
1
M

× q(θm|λ)
q(θm|λ0)

Problem:
High variance when q(θm|λ) and q(θm|λ0) are very different.
Solutions:
▶ Use self-normalized importance sampling, replacing wm with ŵm = wm∑

j wj

▶ Estimate the individual elements of the whole gradient independently,
using separate set of wm for each
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Implementation details:
▶ We re-use the old gradients with probability ρ,

and otherwise compute the gradient again
▶ SAG implemented so that gradients of other

mini-batches are multiplied with α before
each update

▶α ramps up from 0 to 1 during the first few
passes through the data

▶ Standard SAG obtained when ρ = 0 and
standard SGD when also α = 0

▶ Automatic differentiation with autograd,
working on Edward implementation

Demonstration on a Gaussian mixture model
on the MNIST data, simply to study the basic
behavior of the algorithm.

Fig 1. Re-using gradients speeds up learning compared
to pure SGD. Switching to SAG helps as does re-using
the previous gradients, and combining both elements
provides the fastest convergence. Here self-normalized
individual weights for each gradient element were used.

Fig 2. Distribution of convergence times over 200
random initializations. Our algorithm outperforms SGD
with any of the weighting schemes, and the best variant
for this model used self-normalization applied for
individual weights for each element of the gradient.
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