Stochastic Expectation Propagation for Large Scale
Gaussian Process Classification

Daniel Hernandez-Lobato José Miguel Hernandez-Lobato
Universidad Auténoma de Madrid Harvard University
daniel.hernandez@uam.es jmhl@seas.harvard.edu

Yingzhen Li Thang Bui Richard E. Turner
University of Cambridge University of Cambridge University of Cambridge
yl494@cam.ac.uk tdb40@cam.ac.uk ret26@cam.ac.uk

Abstract

A method for large scale Gaussian process classification has been recently pro-
posed based on expectation propagation (EP). Such a method allows Gaussian
process classifiers to be trained on very large datasets that were out of the reach
of previous deployments of EP and has been shown to be competitive with related
techniques based on stochastic variational inference. Nevertheless, the memory
resources required scale linearly with the dataset size, unlike in variational meth-
ods. This is a severe limitation when the number of instances is very large. Here
we show that this problem is avoided when stochastic EP is used to train the model.

1 Introduction

Gaussian process classifiers are a very effective family of non-parametric methods for supervised
classification [1]. In the binary case, the class label y; € {—1, 1} associated to each data instance x;
is assumed to depend on the sign of a function f which is modeled using a Gaussian process prior.
Given some data D = {(x;,¥;)},, learning is performed by computing a posterior distribution
for f. Nevertheless, the computation of such a posterior distribution is intractable and it must be
approximated using methods for approximate inference [2l]. A practical disadvantage is that the cost
of most of these methods scales like C’)(n3), where 7 is the number of training instances. This limits
the applicability of Gaussian process classifiers to small datasets with a few data instances at most.

Recent advances on Gaussian process classification have led to sparse methods of approximate in-
ference that reduce the training cost of these classifiers. Sparse methods introduce m < n inducing
points or pseudoinputs, whose location is determined during the training process, leading to a train-
ing cost that is O(m?n) [3, 4, [5]. A notable approach combines in [6] the sparse approximation
suggested in [7]] with stochastic variational inference [8]]. This allows to learn the posterior for f
and the hyper-parameters (inducing points, length-scales, amplitudes and noise) using stochastic
gradient ascent. The consequence is that the training cost is O(m?), which does not depend on the
number of instances n. Similarly, in a recent work, expectation propagation (EP) [9] is considered as
an alternative to stochastic variational inference for training these classifiers [[10]. That work shows
(1) that stochastic gradients can also be used to learn the hyper-parameters in EP, and (ii) that EP
performs similarly to the variational approach, but does not require one-dimensional quadratures.

A disadvantage of the approach described in [10] is that the memory requirements scale like O(nm)
since EP stores in memory O(m) parameters for each data instance. This is a severe limitation when
dealing with very large datasets with millions of instances and complex models with many inducing
points. To reduce the memory cost, we investigate in this extended abstract, as an alternative to EP,
the use of stochastic propagation (SEP) [L1]. Unlike EP, SEP only stores a single global approximate
factor for the complete likelihood of the model, leading to a memory cost that scales like O(m?).

2 Large scale Gaussian process classification via expectation propagation

We now explain the method for Gaussian process classification described in [[10]. Consider y =
(y1,.-.,Yyn) the observed labels. Let X = (x1,...,%,)T be a matrix with the observed data. The
assumed labeling rule is y; = sign(f(x;) + ¢;), where f(-) is a non-linear function following a
zero mean Gaussian process with covariance function k(-,), and ¢; is standard normal noise that
accounts for mislabeled data. Let X = (X1, ...,X%,,)" be the matrix of inducing points (i.e., virtual
data that specify how f varies). Let f = (f(x1),...,f(x,))T and f = (f(X1),..., f(Xu))"
the vectors of f values associated to X and X, respectively. The posterior of f is approximated as
p(fly) =~ p(f|f |f)q(f)df, with ¢ a Gaussian that approximates p(f|y), i.e., the posterior of the values
associated to X. To get ¢, first the full independent training conditional approximation (FITC) [3] of
p(f|f) is employed to approximate p(f|y) and to reduce the training cost from O(n?) to O(m?n):

w1y _ JpyE)pEE)dfpEX) [pyIf)prme (FE)dfp(E[X) [T7 ¢:(E)p(EX)

p(fly) = = ~ = = = , (M
p(y|X) B p(yIX) p(y[X)

where p(y|f) = [T;_; ®(yifi), prrc(flf) = T, p(filf) = [LiZ 1N(fz|mu8l) and ¢;(f) =

f‘b yzfz (fz\mi,)dfl = CI)(yi’ﬂ’Li/\/Si—‘rl), with m; = K., K f s; = Ky5 —

K, K5 1Kf o . p(f|X) = N(£]0, K) and p(y|X) is the rriarginal hkehhood. Furthermore, Kz
isa matrlx with the prior covariances among the entries in f, K 7.7 is a row vector with the prior

covariances between f; and f and Ky, , is the prior variance of f;. Finally, A'(-|m,) denotes the
p.d.f of a Gaussian distribution with mean vector equal to m and covariance matrix equal to 3.

Next, the r.h.s. of (I]) is approximated in [10] via expectation propagation (EP) to obtain g. For this,
each non-Gaussian factor ¢; is replaced by a corresponding un-normalized Gaussian approximate

factor ¢;. That is, ¢;(F) = @ (yimi/ /s +1) ~ ¢i(f) = 3 exp{fﬂifTvafﬂ + [L,'?Tqu}
where v, = K— 1Kf 1 is a m dimensional vector, and s;, I; and f[i; are parameters estimated by
EP so that ¢; is 51m11ar to ¢; in regions of high posterior probability as estimated by ¢* o ¢/ b;.
Namely, gZ)Z = arg min KL(¢iq\i‘|J)iq\i), where KL is the Kullback Leibler divergence. We note
that each gz~51 has a one-rank precision matrix and hence only O(m) parameters need to be stored
per each ¢;. The posterior approximation ¢ is obtained by replacing in the r.h.s. of (1) each exact
factor ¢; with the corresponding ¢;. Namely, ¢(f) = T, 6:(F)p(F|X)/Z,, where Z, is a constant

that approximates p(y|X), which can be maximized for finding good hyper-parameters via type-II
maximum likelihood [1]. Finally, since all factors in q are Gaussian, ¢ is a multivariate Gaussian.

In order for Gaussian process classification to work well, hyper-parameters and inducing points

must be learned from the data. Previously, this was infeasible on big datasets using EP. In [10] the
gradient of log Z; w.r.t ; (i.e., a parameter of the covariance function k or a component of X) is:
0log Z, _ gt aepﬁm pnor Z 0log Z;

8€j aé-] p[‘l()r af] — 8%77)

where 1 and 7,0, are the expected sufficient statistics under g and p(f|X), respectively, Oprior are

the natural parameters of p(f|X), and Z; is the normalization constant of ¢;¢*. We note that (2) has
a sum across the data. This enables using stochastic gradient ascent for hyper-parameter learning.

2

A batch iteration of EP updates in parallel each ¢;. After this, q is recomputed and the gradients of
log Z, with respect to each hyper-parameter are used to update the model hyper-parameters. The
EP algorithm in [[10] can also process data using minibatches of size s < n. In this case, the update
of the hyper-parameters and the reconstruction of ¢ is done after processing each minibatch. The

update of each (51 corresponding to the data contained in the minibatch is also done in parallel.
When computing the gradient of the hyper-parameters, the sum in the r.h.s. of (@) is replaced by a
stochastic approximation, i.e.,n/s), , 0log Z; /¢;, with M the set of indices of the instances of

the current minibatch. When using minibatches and stochastic gradients the training cost is O(m?).

3 Stochastic expectation propagation for training the model

The method described in the previous section has the disadvantage that it requires to store in memory
m + 1 parameters for each approximate factor ¢;. This leads to a memory cost that scales like

O(nm). Thus, in very big datasets where n is of the order of several millions, and in complex
models where the number of inducing points m may be in the hundreds, this cost can lead to memory
problems. To alleviate this, we consider training via stochastic expectation propagation (SEP) as an
alternative to expectation propagation [11]. SEP reduces the memory requirements by a factor of n.

In SEP the likelihood of the model is approx-
imated by a single global Gaussian factor g?),
instead of a product of n Gaussian factors ;.
The idea is that the natural parameters 6 of
qg approximate the sum of the natural parame-
ters 3", @; of the EP approximate factors ¢;.

Algorithm 1: Parallel EP - Batch Mode

1: For each approximate factor ¢; to update:

1.1: Compute cavity: ¢*(F) o q(F)/¢:(F)

1.2: Update ¢;: ¢; = proj(¢;)
[T, ¢:(H)p(f]X)

2: Reconstruct ¢: ¢(f) o<
Algorithm 2: Parallel SEP - Batch Mode

This approximation reduces by a factor of n the
memory requirements because only the natural
parameters 6 of é need to be stored in memory,
and the size of 0 is dominated by the precision
matrix of ¢, which scales like O(m?).

1: Set the new global factor ¢pew to be uniform.
2: For each exact factor ¢; to incorporate:

2.1: Compute cavity: ¢*(F) oc ¢(F)/d(F) =
2.2: Find ¢;: ¢; = p{'oj(gi)l-)

2.3: Accumulate ¢;: Gnew (F) = drew (F) i (F)
When SEP is used instead of EP for finding ¢ 5. Reconstruct g: ¢(F) o guew (F)p(£[X)

some things change. In particular, the computa- -
. . C \i T Algorithm 3: Parallel ADF - Batch Mode
tion of the cavity distribution ¢* < ¢/¢; is now -
1: Set g to the prior. For each ¢; to process:

replaced by ¢\ « ¢/¢'/™, Vi. Furthermore, . i

in the case of the batch learning method de- 1'1: Compu“i c'av~1ty;q (f,) = a(f)
scribed in the previous section, the correspond- 1.2: Update ¢:: §; = I:lrng i)
ing approximate factor ¢; for each instance is z Update g: ¢(F) o< [, #i(f)a(f)

computed as ¢; — are i KL(¢iq"||6:q\") to Figure 1: Comparison among EP, SEP and ADF
then set ¢ = [[;_; ¢;. This is equivalent to jp the model from [[10]. Training is done in batch
adding naturalfparantl)eters, ie, 0 = Z?:l 0;. mode. The projection step refers to KL minimiza-
In the case of minibatch training with mini- jon- (b)) — in- o\l g \E

batches of size s < n the update is slightly tion: proj(¢:) = arg 2 KL(9igll0:4™)-
different to account for the fact that we have only processed a small amount of the total data. In
this case, Opew = Ooia X (1 — 8)/n+ >, \(0i, where M is a set with the indices of the instances
contained in the current minibatch. Finally, in SEP the computation of the gradients for updating the
hyper-parameters is done exactly as in EP. Figure || compares among EP, SEP and ADF [12] when
used to update g. In the figure training is done in batch mode and the update of the hyper-parameters
has been omitted since it is exactly the same in either EP, SEP or ADF. In ADF the cavity distribution
¢\ is simply the posterior approximation ¢, and when ¢ is recomputed, the natural parameters of the
approximate factors are simply added to the natural parameters of g. ADF is a simple baseline in
which each data point is seen by the model several times and hence it underestimates variance [11].

4 [Experiments
We evaluate the performance of the model described before when trained using EP, SEP and ADF.

Performance on datasets from the UCI repository: First, we consider 7 datasets from the UCI
repository. The experimental protocol followed is the same as the one described in [10]. In these
experiments we consider a different number of inducing points m. Namely, 15%, 25% and 50% of
the total training instances and the training of all methods is done in batch mode for 250 iterations.
Table [T] shows the average negative test log likelihood of each method (the lower the better) on
the test set. The best method has been highlighted in boldface. We note that SEP obtains similar
and sometimes even better results than EP. By contrast, ADF performs worse, probably because it
underestimating the posterior variance. In terms of the average training time all methods are equal.

Performance on big datasets: We carry out experiments when the model is trained using mini-
batches. We follow [10]] and consider the MNIST dataset, which has 70,000 instances, and the
airline delays dataset, which has 2,127,068 data instances (see [L0] for more details). In both cases
the test set has 10,000 instances. Training is done using minibatches of size 200, which is equal to
the number of inducing points m. In the case of the MNIST dataset we also report results for batch
training (in the airline dataset batch training is infeasible). Figure[2]shows the avg. negative log like-
lihood obtained on the test set as a function of training time. In the MNIST dataset training using
minibatches is much more efficient. Furthermore, in both datasets SEP performs very similar to EP.

Table 1: Average negative test log likelihood for each method and average training time in seconds.

m = 15% m = 25% m = 50%

Problem ADF EP SEP ADF EP SEP ADF EP SEP

Australian | .70 +.07 .69 + .07 .63 +.05|.70 +.08 .67 + .07 .63 + .05|.67 +.06 .64 + .05 .63 + .05
Breast 12 +£.06 .11 £.05 11 +£.05(.12 +.05 .11 +.05 .11 +£.05|.12+.05 .11 + .05 .11 + .06
Crabs .08 £.06 .06 + .06 .06 + .07 |.09 +.06 .06 + .06 .06 + .07 |.08+.06 .06 + .06 .06 + .07
Heart 45 +£.18 40 +£.13 39 + .11 .48 +.18 41 +.12 .40 +.11|.46+.17 41 + .11 .40 +.12
Ionosphere | .29 +.18 .26 + .19 .28 + .16|.30 +.17 .27 + .20 .27 + .17 |.33+.19 .27 + .19 .27 + 17
Pima 52 £.07 .52 +£.07 .49 +£.05|.58 +.10 .51 + .06 .49 +.05|.62+.09 .50 + .05 .49 + .05
Sonar 40 £.15.33+£.10 35+ .11 .46 +32.32+.10 35+.12].46+.24 .29 +.09 33 +.12
Avg. Time |18.2+0.319.3+ 0.5 18.8+ 0.1 |38.54+0.538.9+ 0.6 40.2+ 0.2 {145+4.0 136+ 3.0 149+ 1.0

MNIST: odd vs even digits Airline Delays
1 —— ~e- EP Stochastic Gard.

0.72
|

=@~ SEP Stochastic Gard.
ADF Stochastic Grad.
Linear Model

0.6
1

0.4
0.68
|

EP Batch
EP Stochastic Grad.
SEP Batch

SEP Stochastic Gard.
ADF Stochastic Grad.
ADF Batch

0.64
|

Avg. Neg. Test Log Likelihood
Avg. Neg. Test Log Likelihood

0.60
|

REEREYIT:

T T T T
1 2 3 4 -1 0 1 2 3 4
Training Time in Seconds in a log10 Scale Training Time in Seconds in a log10 Scale

Figure 2: (top) Avg. negative test log likelihood for EP, SEP and ADF as a function of time. We show results
when using a minibatch size 200 for training (stochastic) and when using all data instances at once (batch). The
performance of a linear logistic regression classifier is also shown for the airline dataset. Best seen in color.

However, in these experiments ADF provides equivalent results to both SEP and EP. Furthermore,
in the airline dataset both SEP and ADF provide better results than EP at the early iterations, and
improve a simple linear model after just a few seconds. The reason is that, unlike EP, SEP and ADF
do not initialize the approximate factors to be uniform, which has a significant cost in this dataset.

Dataset size and model complexity: The re- MNIST: odd vs even digits

sults obtained in the large datasets contradict N

the results obtained in the UCI datasets in the | + + + + e EEP
sense that ADF performs similar to EP. We be- + + ADF

lieve the reason for this is that ADF may per-
form similar to EP only when the model is
simple (small m) and/or when the number of

8 & a & 2

Avg. Neg. Test Log. Likelihood
0.10 0.15 0.20 0.25 0.30 0.35 0.40

training instances is very large (large n). To + ® n=1,000

check that this is the case, we repeat the experi- T, & § + - nEoe

ments with the MNIST dataset with an increas- S 4 g % e n=10000

ing number of training instances n (from 1, 000 w w T w w :
50 100 200 300 400

to 20, 000) and with an increasing number of in-
ducing points m (from 50 to 400). The results
obtained are shown in Figure[3] which confirms
that ADF only performs similar to EP in the
scenario described. By contrast, SEP seems to
always perform similar to EP. Finally, increasing the model complexity (m) seems beneficial.

Inducing Points m (model complexity)
Figure 3: Performance of each method (ADF, SEP and
EP) on the MNIST dataset for increasing training set
sizes n and model complexity (# inducing points m).

5 Conclusions

Stochastic expectation propagation (SEP) [[11] can reduce the memory cost of the method recently
proposed in [10] to address large scale Gaussian process classification. Such a method uses expec-
tation propagation (EP) for training, which stores O(nm) parameters in memory, where m < n is
some small constant and n is the training set size. This cost may be too expensive in the case of
very large datasets or complex models. SEP reduces the storage resources needed by a factor of n,
leading to a memory cost that is O(m?). Furthermore, several experiments show that SEP provides
similar performance results to those of EP. A simple baseline known as ADF may also provide sim-
ilar results to SEP, but only when the number of instances is very large and/or the chosen model is
very simple. Finally, we note that applying Bayesian learning methods at scale makes most sense
with large models, and this is precisely the aim of the method described in this extended abstract.

Acknowledgments: YL thanks the Schlumberger Foundation for her Faculty for the Future PhD
fellowship. JMHL acknowledges support from the Rafael del Pino Foundation. RET thanks EPSRC
grant #s EP/G050821/1 and EP/L000776/1. TB thanks Google for funding his European Doctoral
Fellowship. DHL and JMHL acknowledge support from Plan Nacional I+D+i, Grant TIN2013-
42351-P, and from Comunidad Auténoma de Madrid, Grant S2013/ICE-2845 CASI-CAM-CM.
DHL is grateful for using the computational resources of Centro de Computacion Cientifica at Uni-
versidad Auténoma de Madrid.

References
[1] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2006.

[2] H. Nickisch and C.E. Rasmussen. Approximations for binary Gaussian process classification.
Journal of Machine Learning Research, 9:2035-2078, 2008.

[3] J. Quifionero Candela and C.E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, pages 1935-1959, 2005.

[4] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances
in Neural Information Processing Systems 18, 2006.

[5] A.Naish-Guzman and S. Holden. The generalized FITC approximation. In Advances in Neural
Information Processing Systems 20. 2008.

[6] J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classi-
fication. In Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, 2015.

[7] M. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

[8] M.D. Hoffman, D.M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal
of Machine Learning Research, 14:1303-1347, 2013.

[9] T.Minka. Expectation propagation for approximate Bayesian inference. In Annual Conference
on Uncertainty in Artificial Intelligence, pages 362-36, 2001.

[10] D. Hernidndez-Lobato and J. M. Herndndez-Lobato. Scalable Gaussian process classification
via expectation propagation. ArXiv e-prints, 2015. arXiv:1507.04513.

[11] Y.Li, J. M. Herndndez-Lobato, and R. Turner. Stochastic expectation propagation. In Advances
in Neural Information Processing Systems 29, 2015.

[12] P. S. Maybeck. Stochastic models, estimation and control. Academic Press, 1982.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

	Introduction
	Large scale Gaussian process classification via expectation propagation
	Stochastic expectation propagation for training the model
	Experiments
	Conclusions

