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Abstract

Bayesian methods are appealing in their flexibility in modeling complex data and
ability in capturing uncertainty in parameters. However, when Bayes’ rule does
not result in tractable closed-form, most approximate inference algorithms lack
either scalability or rigorous guarantees. To tackle this challenge, we propose
a simple yet provable algorithm, Particle Mirror Descent (PMD), to iteratively
approximate the posterior density. PMD is inspired by stochastic functional mirror
descent where one descends in the density space using a small batch of data points
at each iteration, and by particle filtering where one uses samples to approximate
a function. We prove result of the first kind that, with m particles, PMD provides
a posterior density estimator that converges in terms of KL-divergence to the true
posterior in rate O(1/

√
m). We demonstrate competitive empirical performances

of PMD compared to several approximate inference algorithms in various models.

1 Introduction
Bayesian methods are attractive because of their ability in modeling complex data and capturing
uncertainty in parameters. The crux of Bayesian inference is to compute the posterior distribution
p(θ|X) =

p(θ)
∏N
n=1 p(xn|θ)∫

p(θ)
∏N
n=1 p(xn|θ)dθ

. It can be challenging to compactly represent, tractably compute
or efficiently sample from the solution when the prior is not conjugate to the likelihood. Besides
the intractability, large-scale datasets also pose additional challenges for Bayesian inference. To
tackle these challenges, the optimization perspective of Bayasian inference provides us a chance to
leverage recent advances from convex optimization algorithms. Zellner [1] showed that Bayes’ rule
can be obtained by solving the optimization problem

min
q(θ)∈P

L(q) := KL(q(θ) || p(θ))−
N∑
n=1

[ ∫
q(θ) log p(xn|θ) dθ

]
, (1)

where P is the space of density. We present a simple, flexible and provable algorithm, Particle
Mirror Descent (PMD), to iteratively approximate the posterior density by solving optimization (1).
The algorithm connects stochastic optimization, functional analysis, kernel density estimation and
Monte Carlo approximation to Bayesian inference.

2 Error Tolerant Stochastic Mirror Descent in Density Space
We will resort to stochastic optimization to avoid scanning through the entire data in each gradient
evaluation. In particular, the stochastic mirror descent framework [4] expands the usual stochastic
gradient descent scheme to problems with non-Euclidean geometries. We now introduce the stochas-
tic mirror descent algorithm in the context of minimizing the objective L(q) in density space.

At t-th iteration, given a data point xt drawn randomly from the data setX , the stochastic functional
gradient of L(q) with respect to q(θ) ∈ L2 is gt(θ) = log(q(θ)) − log(p(θ)) −N log p(xt|θ). The
stochastic mirror descent updates the density by the prox-mapping

qt+1 = Pqt(γtgt) := argminq̂(θ)∈P {〈q̂(θ), γtg(θ)〉L2
+KL(q̂(θ)‖q(θ))}

where γt > 0. Since the domain is density space, the KL-divergence is a natural choice for the
prox-function. For any q ∈ P and g ∈ L2, the prox-mapping therefore leads to the update

qt+1(θ) = qt(θ) exp(−γtgt(θ))/Z = qt(θ)
1−γtp(θ)γtp(xt|θ)Nγt/Z, (2)
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where the normalization Z :=
∫
qt(θ) exp(−γtgt(θ)) dθ. This update resembles to the Bayes’ rule.

However, an important difference here is that the posterior is updated using the fractional power of
the previous solution, the prior and the likelihood. The stochastic mirror descent allows us to go
through the dataset several passes to refine the solution.

Still qt+1(θ) may not be tractable due to the normalization Z. In fact, we can show that stochastic
mirror descent can tolerate additional error during each prox-mapping step, which will give us rooms
to design more flexible and provable approximation algorithms. Given ε > 0 and g ∈ L2, we define
the ε-prox-mapping of q as the set

Pεq(g) := {q̂ ∈ P : KL(q̂||q) + 〈g, q̂〉L2
6 minq̂∈P{KL(q̂||q) + 〈g, q̂〉L2

}+ ε},
and consider the update q̃t+1(θ) ∈ Pεtq̃t(γtgt). When εt = 0,∀t, this reduces to the usual stochastic
mirror descent algorithm. The classical results regarding the convergence rate can also be extended.

Essentially, this implies that we can approximate the intermediate density qt(θ) by some tractable
representation. As long as the approximation error is not too large, the algorithm will still converge;
and if the approximation does not involve costly computation, the overall algorithm will be efficient.

3 Particle Mirror Descent Algorithm
We will introduce two efficient strategies to approximate the intermediate density, one based on
weighted particles and the other based on weighted kernel density estimator. Interestingly, these two
methods resemble particle reweighting and rejuvenation in sequential Monte Carlo yet with notable
differences.
3.1 Posterior Approximation Using Weighted Particle
Assume the support of prior p(θ) is the same as the true posterior q∗(θ) = p(θ|X), such that
Fp = {q(θ) = α(θ)p(θ),

∫
α(θ)p(θ)dθ = 1, 0 6 α(θ) 6 C} and q∗(θ) ∈ Fp. We will simply draw

a set of samples (or particles) from p(θ), and approximate the intermediate posterior using these
particles. More specifically, we sample a set of locations, {θi}mi=1, i.i.d. from p(θ) and fix them
across iterations. Then given αt(θi) from previous iteration, we will approximate qt+1(θ) as a set
of weighted particles

q̃t+1(θ) =
∑m

i=1
αt+1(θi) δ(θi), where αt+1(θi) :=

αt(θi) exp(−γtgt(θi))∑m
i=1 αt(θi) exp(−γtgt(θi))

.

The update is derived from the closed-form solution to the exact prox-mapping step (2), i.e.,
αt+1(θ) = αt(θ) exp(−γtgt(θ))/Z. Since Z is constant common to all αt(θi), and αi is a ra-
tio, Z can be ignored. One can simply update an unnormalized version of αt(θ), and then use them
to compute αi. In summary, we can simply update the set of working variable αi as

αi ← α1−γt
i p(xt|θi)Nγt ,∀i and then αi ←

αi∑m
i=1 αi

. (3)

We can show that the convergence rate of such approximation is independent of the dimension. 1

Theorem 1 Assume p(θ) has the same support as the true posterior q∗(θ), i.e., 0 6 q∗(θ)/p(θ) 6
C. Assume further model ‖p(x|θ)N‖∞ 6 ρ, ∀x. Then ∀f(θ) bounded and integrable, the t-step
PMD algorithm with stepsize γt = η

t returns m weighted particles such that

E [|〈q̃t − q∗, f〉|] 6
2
√

max{C, ρeM )}‖f‖∞√
m

+ max

{√
KL(q∗||p), ηM√

2η − 1

}
‖f‖∞√
T

where 〈q̃t − q∗, f〉 :=
∫

(q̃t(θ)− q∗(θ))f(θ)dθ and M := maxt=1,...,T ‖gt‖∞.

3.2 Posterior Approximation Using Weighted Kernel Density Estimator
In general, a π(θ) far way from the true posterior will leads to particle depletion and inaccurate esti-
mation of the posterior. To deal with this issue, we developed an algorithm based on weighted kernel
density estimator. The algorithm leverages the error tolerate stochastic mirror descent, and alternate
between sampling from weighted density estimators, and updating the kernel density estimator.

More specifically, given q̃t(θ) from previous iteration which is supposed to be easy to sample from,
we will approximate qt+1(θ) as a weighted kernel density estimator

q̃t+1(θ) =
∑m

i=1
αiKh(θ − θi), where αi :=

exp(−γtgt(θi))∑m
i=1 exp(−γtgt(θi))

, {θi}mi=1
i.i.d.∼ q̃t−1(θ), (4)

1Due to space limitation, we ignore the proofs. For the details of the proof of theorems 1 and 2, please refer
to our full version in http://arxiv.org/abs/1506.03101.
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Algorithm 1 Particle Mirror Descent Algorithm

1: Input: Data set X = {xn}Nn=1, prior p(θ)
2: Output: posterior density estimator q̃T (θ)
3: Initialize q̃1(θ) = p(θ)
4: for t = 1, 2, . . . , T − 1 do
5: xt

unif.∼ X
6: if Good p(θ) is provided then
7: {θi}mti=1

i.i.d.∼ π(θ) when t = 1

8: αi ← α1−γt
i p(xt|θi)Nγt ,∀i

9: αi ← αi∑mt
i=1 αi

,∀i
10: q̃t+1(θ) =

∑mt
i=1 αi δ(θi)

11: else
12: {θi}mti=1

i.i.d.∼ q̃t(θ)
13: αi ← q̃t(θi)

−γtp(θi)
γtp(xt|θi)Nγt ,∀i

14: αi ← αi∑mt
i=1 αi

,∀i
15: q̃t+1(θ) =

∑mt
i=1 αiKht (θ − θi)

16: end if
17: end for

where h > 0 is the bandwidth parame-
ter and Kh(θ) := 1

hd
K(θ/h) is a smooth-

ing kernel. The update is again derived
based on the closed-form solution to the ex-
act prox-mapping step (2). However, the
particle location in this case is sampled from
the previous solution q̃t(θ). The idea here
is that q̃+

t (θ) = q̃t(θ) exp(−γtgt(θ))/Z
can be viewed as an importance weight-
ed version of q̃t(θ) with weights equal to
exp(−γtgt(θ))/Z. If we want to approx-
imate q̃+

t (θ), we can sample m locations
from q̃t(θ) and associate each location the
normalized weight αi. To obtain a densi-
ty for re-sampling in the next iteration, we
place a kernel function Kh(θ) on each sam-
pled location. Since αi is a ratio, we can
avoid evaluating the normalization factor Z
when computing αi.

In summary, we can simply update the set of
working variable αi as

αi ← q̃t−1(θi)
−γtp(θi)

γtp(xt|θi)Nγt ,∀i,
with αi ← αi∑m

i=1 αi
. This weighted kernel density estimation step is equivalent to solving the

prox-mapping step Pεtq̃t(γtgt) as we discussed in Section 1. We can formally provide the rate of
convergence of weighted KDE approximation in terms of KL-divergence, with assumptions
A. Kernel K(·) is a β-valid density kernel with a compact support and there exists µ, ν, δ > 0 such

that
∫
K(z)2 dz 6 µ2,

∫
‖z‖β |K(z)|dz 6 ν and K(z) > δ−1 almost surely.

B. The logarithmic of the prior and likelihood belong to (β;L)-Hölder class.

Theorem 2 Based on the above assumptions, when setting γt = min{ 2
t+1 ,

δ

Mm
β/(d+2β)
t

},

E[KL(q∗||q̃T )] 6
2 max

{
KL(q∗||q̃1),M2

}
T

+ C1
∑T
t=1 t

2m
−2β/d+2β
t

T 2

where M := maxt=1,...,T ‖gt‖∞, C1 := O(1)(µ+ νL)2δ with O(1) being a constant.

3.3 Overall Algorithm
We present the overall algorithm, Particle Mirror Descent (PMD), in Algorithm 1, incorporating the
two strategies from section 3.1 and 3.2. PMD takes as input N samples X = {xn}Nn=1, a prior
p(θ) over the model parameter and the likelihood p(x|θ), and outputs the posterior density estimator
q̃T (θ) after T iterations. At each iteration, PMD will maintain an approximate q̃t(θ) of the posterior
p(θ|X). We note that our algorithm can also take a mini-batch of points in each iteration, and the
guarantees still hold. The proposed two strategies have their own merits: the computation cost of
the first strategy in each step is linear to the number of particles, m; while the cost is O(m2) in the
second strategy because of the KDE. However, the KDE in second strategy could adapt the support
and relax the requirement of π(θ) in first strategy. In practice, we could combine the proposed two
strategies to balance cost and performance. In the beginning stage, we use the second strategy to
locate the support. Since the number of samples is small, the computational cost is tolerable. After
several iterations, we will have an estimate of the support of the posterior, and we could start the
first strategy based on such estimator.

4 Experiments
We conduct experiments on mixture models, Bayesian logistic regression, and sparse Gaussian pro-
cesses [5, 6] to demonstrate the advantages of the proposed algorithm in capturing multiple modes,
dealing with non-conjugate models, and handling real-world applications, respectively. We com-
bine two proposed strategies to balance the computational cost and performance. For the mix-
ture model and logistic regression, we compare our algorithm three sampling algorithms, i.e., one-
pass sequential Monte Carlo (one-pass SMC) [7], stochastic gradient Langevin dynamics (SGD
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Figure 1: Experimental results for mixture model on synthetic dataset.
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Figure 2: Experimental results on several different models for real-world datasets.

Langevin) [8] and Gibbs sampling, and two variational inference methods, i.e., stochastic variation-
al inference (SVI) [9] and stochastic variant of nonparametric variational inference (SGD NPV) [10].
For sparse GP model, we compared with several existing inference algorithms designed specifically
for the model. For the derivation details of PMD for different models, details of experiments and
additional experiments results, please refer to our full version in http://arxiv.org/abs/1506.03101.

Mixture Models. We conduct comparison on a simple yet interesting mixture model [8], the ob-
servations xi ∼ pN (θ1, σ

2
x) + (1 − p)N (θ1 + θ2, σ

2
x) and θ1 ∼ N (0, σ2

1), θ2 ∼ N (0, σ2
2), where

(σ1, σ2) = (1, 1), σx = 2.5 and p = 0.5. We repeat the experiments 10 times and report the average
results. The actual recovered posterior distribution of our method are illustrated in Figure 1 (1)(2)
as a concrete example. PMD fits both modes well and recovers nicely the posterior while other
algorithms either miss a mode or fail to fit the multimodal density. Figure 1 (3)(4) compares the
algorithms in terms of total variation and cross entropy. PMD achieves the best performance with
fewer observations demonstrating that our algorithm is able to take the advantages of nonparametric
model to capture the modes and to adapt to the shape of posterior automatically.
Bayesian Logistic Regression. We test our algorithm on logistic regression with non-conjugate
prior for handwritten digits classification on the MNIST8M 8 vs. 6 dataset. The dataset contains
about 1.6M training samples and 1932 testing samples. We initialize all the inference algorithms
with prior distribution and stop the stochastic algorithms after they pass through the whole dataset
5 times, while SMC only pass the dataset once. We repeat the experiments 10 times and the results
are reported in Figure 2(1). Obviously, Gibbs sampling [11], which needs scan the whole set, is not
suitable to large-scale problem. The SVI performs best at the beginning stage. This is expectable
because searching in the Gaussian family is simpler comparing to nonparametric density family.
However, it is should be noticed that our algorithm achieves comparable performance with the gen-
eral nonparametric form when feeding enough data, 98.8%, to SVI which use carefully designed
lower bound of the log-likelihood [12]. SGD NPV is flexible with mixture models family, however,
its speed becomes the bottleneck. In SGD NPV, the gain from using stochastic gradient is dragged
down by using L-BFGS to optimize the second-order approximation of the evidence lower bound.
Sparse Gaussian Processes. We conduct the comparison on sparse GPs for the task to predict the
year of songs [13]. In this task, we compare with one-pass SMC and subset of data approxima-
tion (SoD) [5]. We also compared with the extended version of the SVI [6] to sparse GPs. The
dataset contains about 0.5M songs, each of which represented by 90-dimension features. We stop
the stochastic algorithms after they pass through the whole dataset 2 times, while SMC only pass the
dataset once. We use 16 particles in both SMC and PMD. Gaussian RBF kernel is used in the model.
The number of inducing inputs in sparse GP is set to be 210, and all the other hyperparameters of
sparse GP are fixed for all the inference methods. We rerun experiments 10 times and the results
are reported in Figure. 2(2). Our algorithm achieves the best RMSE 0.027, significant better than
one-pass SMC, SVI and the baseline SoD.
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