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Abstract

We develop unbiased implicit variational inference (uivi), a method that expands the applicabil-
ity of variational inference by defining an expressive variational family. uivi considers an implicit
variational distribution obtained in a hierarchical manner using a simple reparameterizable distribu-
tion whose variational parameters are defined by arbitrarily flexible deep neural networks. Unlike
previous works, uivi directly optimizes the evidence lower bound (elbo) rather than an approxima-
tion to the elbo. We demonstrate uivi on several models, including Bayesian multinomial logistic
regression and variational autoencoders, and show that uivi achieves both tighter elbo and better
predictive performance than existing approaches at a similar computational cost.
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1. Introduction

We consider the problem of approximating the posterior distribution p(z |x) of a probabilistic model
p(x, z) using an implicit variational distribution qθ(z). A distribution qθ(z) is implicit when it is not
possible to evaluate its density but it is possible to draw samples from it. One typical way to draw
from an implicit distribution in variational inference (vi) is to first sample a noise vector and then
push it through a deep neural network (Mohamed and Lakshminarayanan, 2016; Huszár, 2017; Tran
et al., 2017; Li and Turner, 2018; Mescheder et al., 2017; Shi et al., 2018).

vi maximizes the evidence lower bound (elbo), given by

L(θ) = Eqθ(z) [log p(x, z)− log qθ(z)] . (1)

Implicit vi expands the variational family making qθ(z) more expressive, but computing the en-
tropy term in the elbo—or its gradient—becomes intractable. To address that, implicit vi typically
relies on density ratio estimation (Goodfellow et al., 2014). However, density ratio estimation is
challenging in high-dimensional settings (Sugiyama et al., 2012).

We develop an unbiased estimator of the gradient of the elbo that avoids density ratio estimation.
Our approach builds on semi-implicit variational inference (sivi) (Yin and Zhou, 2018) in that we
also define the variational distribution by mixing the variational parameter with an implicit distribu-
tion. In contrast to sivi, we propose an unbiased optimization method that directly maximizes the
elbo rather than a bound. We call our method unbiased implicit variational inference (uivi). We
show experimentally that uivi can achieve better elbo and predictive log-likelihood than sivi at a
similar computational cost.
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2. Method Description

Semi-Implicit Variational Distribution. unbiased implicit variational inference (uivi) uses a
semi-implicit variational distribution qθ(z) (Yin and Zhou, 2018); that is, qθ(z) is defined in a hier-
archical manner with a mixing parameter,

ε ∼ q(ε), z ∼ qθ(z | ε), or equivalently, qθ(z) =

∫
qθ(z | ε)q(ε)dε. (2)

Eq. 2 reveals why the resulting variational distribution qθ(z) is implicit, as we can obtain samples
from it but cannot evaluate its density, as the integral is intractable.

The dependence of the conditional qθ(z | ε) on the random variable ε can be arbitrarily complex.
In uivi, its parameters are the output of a deep neural network (parameterized by the variational
parameters θ) that takes ε as input.

Assumptions. In uivi, the conditional qθ(z | ε)must satisfy two assumptions. First, it must be repa-
rameterizable. That is, to sample from qθ(z | ε), we can first draw an auxiliary variable u and then
set z as a deterministic function hθ(·) of the sampled u. That is, the process u ∼ q(u), z = hθ(u ; ε)
generates a sample z ∼ qθ(z | ε). The transformation hθ(u ; ε) is parameterized by the random vari-
able ε and the variational parameters θ, but the auxiliary distribution q(u) has no parameters.

The second assumption on the conditional qθ(z | ε) is that it is possible to evaluate the log-density
log qθ(z | ε) and its gradient with respect to z, ∇z log qθ(z | ε). This is not a strong assumption;
indeed it holds for most reparameterizable distributions.

Unbiased Gradient Estimator. Now we derive the unbiased gradient estimator of the elbo. First,
uivi uses the reparameterization z = hθ(u ; ε) to rewrite Eq. 1 as an expectation with respect to
q(ε) and q(u),

L(θ) = Eq(ε)q(u)
[
log p(x, z)− log qθ(z)

∣∣∣
z=hθ(u ; ε)

]
.

To obtain the gradient of the elbo with respect to θ, the gradient operator can now be pushed inside
the expectation, as in the standard reparameterization method (Kingma and Welling, 2014; Titsias
and Lázaro-Gredilla, 2014; Rezende et al., 2014). This gives two terms: one corresponding to the
model and one corresponding to the entropy, ∇θL(θ) = Eq(ε)q(u)

[
gmod
θ (ε, u) + gentθ (ε, u)

]
. These

two terms are, respectively,

gmod
θ (ε, u) , ∇z log p(x, z)

∣∣∣
z=hθ(u ; ε)

∇θhθ(u ; ε), (3)

gentθ (ε, u) , −∇z log qθ(z)
∣∣∣
z=hθ(u ; ε)

∇θhθ(u ; ε). (4)

To obtain this decomposition, we have applied the identity that the expected value of the score func-
tion is zero, Eqθ(z) [∇θ log qθ(z)] = 0, which reduces the variance of the estimator (Roeder et al.,
2017). uivi estimates the model component in Eq. 3 using samples from q(ε) and q(u). How-
ever, estimating the entropy component in Eq. 4 is harder because the term ∇z log qθ(z) cannot be
evaluated—the variational distribution qθ(z) is an implicit distribution. uivi addresses this issue
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rewriting Eq. 4 as an expectation, which enables Monte Carlo estimates of gentθ (ε, u). In particular,
uivi rewrites as an expectation the intractable log-density gradient in Eq. 4,

∇z log qθ(z) = Eqθ(ε | z) [∇z log qθ(z | ε)] . (5)

We prove Eq. 5 in Appendix A. This equation shows that the problematic gradient∇z log qθ(z) can
be expressed in terms of an expression that can be evaluated—the gradient ∇z log qθ(z | ε) can be
evaluated by assumption. uivi rewrites the entropy term in Eq. 4 using Eq. 5,

gentθ (ε, u) = −Eqθ(ε′ | z)
[
∇z log qθ(z | ε′)

] ∣∣∣
z=hθ(u ; ε)

×∇θhθ(u ; ε). (6)

The expectation in Eqs. 5 and 6 is taken with respect to the distribution qθ(ε | z) ∝ qθ(z | ε)q(ε). We
call this distribution the reverse conditional. Although the conditional qθ(z | ε) has a simple form
(by assumption, it is a reparameterizable distribution for which we can evaluate the density and its
gradient), the reverse conditional is complex because the conditional qθ(z | ε) is parameterized by
deep neural networks that take ε as input. We show below how to efficiently draw samples from the
reverse conditional to obtain an estimator of the entropy component in Eq. 6.

Full Algorithm. uivi builds the stochastic gradient of the elbo by estimating Eqs. 3 and 6 with a
single sample εs ∼ q(ε) and us ∼ q(u). Estimating the entropy component (Eq. 6) is challenging
because it contains an intractable expectation with respect to the reverse conditional qθ(ε | z). Thus,
uivi forms a Monte Carlo estimator using samples ε′s from the reverse conditional.

The reverse conditional is a complex distribution due to the complex dependency of the (direct)
conditional qθ(z | ε) on the random variable ε. Consequently, sampling from the reverse conditional
may be challenging. uivi exploits the fact that the samples εs that generated zs are also samples
from the reverse conditional. This is because the sampling procedure in Eq. 2 implies that each
pair of samples (zs, εs) comes from the joint qθ(z, ε), and thus εs can be seen as a draw from the
reverse conditional qθ(ε | zs). However, although εs is a valid sample from the reverse conditional,
setting ε′s = εs in the estimation of the entropy component (Eq. 6) would break the assumption
that ε′s and εs are independent. Instead, uivi runs a Markov chain Monte Carlo (mcmc) method,
such as HamiltonianMonte Carlo (hmc) (Neal, 2011), to draw samples from the reverse conditional.
Crucially, uivi initializes the mcmc chain at εs. In this way, there is no burn-in period in the mcmc
procedure, in the sense that the sampler starts from stationarity so that any subsequent mcmc draw
gives a sample from the reverse conditional (Robert and Casella, 2005). To reduce the correlation
between the sample ε′s and the initialization value εs, uivi runs more than one mcmc iterations and
allows for a short burn-in period. (In the experiments of Section 3, we use 10 mcmc iterations where
only the final 5 samples are used to form the Monte Carlo estimate.)

3. Experiments: Bayesian Multinomial Logistic Regression

We now apply uivi to assess the goodness of the resulting variational approximation and the compu-
tational complexity. As a baseline, we compare against sivi (Yin and Zhou, 2018), which has been
shown to outperform other approaches like mean-field vi and be on par with mcmc methods.
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Figure 1. Estimates of the elbo and the test log-likelihood as a function of wall-clock time. Com-
pared to sivi (red), uivi (blue) achieves a better bound on the marginal likelihood and has better
predictive performance.

We consider Bayesian multinomial logistic regression. For a dataset of N features xn and labels
yn ∈ {1, . . . ,K}, the model is p(z)

∏
n p(yn |xn, z), where z denotes the latent weights and biases.

We set the prior p(z) to be standard Gaussian; the categorical likelihood is p(yn = k |xn, z) ∝
exp(x>n zk + z0k).

We use two datasets, mnist and hapt (Reyes-Ortiz et al., 2016). To define the variational distribu-
tion, we choose a standard 100-dimensional Gaussian prior for q(ε). We use a Gaussian conditional
qθ(z | ε) = N (z |µθ(ε), diag (σ)), whose mean is parameterized by a neural network with two hid-
den layers of 200ReLu units each. We set a diagonal covariance that we also optimize (for simplicity,
it does not depend on ε). We run 100,000 iterations of uivi and sivi, subsampling minibatches of
data at each iteration (Hoffman et al., 2013). (We use a minibatch size of 2,000 for mnist and 863
for hapt.) For sivi, we set the parameterK = 200 (Yin and Zhou, 2018).

Results. We obtain a Monte Carlo estimate of the elbo every 100 iterations. Figure 1 (top) shows
the elbo estimates; the plot has been smoothed using a rolling window of size 20 for easier visual-
ization. uivi provides a similar bound on the marginal likelihood than sivi on mnist and a slightly
tighter bound on hapt. In addition, we also estimate the predictive log-likelihood on the test set ev-
ery 1,000 iterations. Figure 1 (bottom) shows the test log-likelihood as a function of the wall-clock
time for both methods and datasets; the plot has been smoothed with a rolling window of size 2.
uivi achieves better predictions on both datasets.

Finally, we found that the time per iterationwas comparable for bothmethods: sivi took 0.14 seconds
per iteration on mnist and 0.09 seconds on hapt, while uivi took 0.11 and 0.10 seconds.
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Appendix A. Proof of Eq. 5

Here we show how to express the gradient ∇z log qθ(z) as an expectation. We start with the log-
derivative identity,

∇z log qθ(z) =
1

qθ(z)
∇zqθ(z).

Next we use the definition of the semi-implicit distribution qθ(z) through a mixing distribution
(Eq. 2) and we push the gradient into the integral,

∇z log qθ(z) =
1

qθ(z)
∇z
∫
qθ(z | ε)q(ε)dε

=
1

qθ(z)

∫
∇zqθ(z | ε)q(ε)dε.

We now apply the log-derivative identity on the conditional qθ(z | ε),

∇z log qθ(z) =
1

qθ(z)

∫
qθ(z | ε)q(ε)∇z log qθ(z | ε)dε.

Finally, we apply Bayes’ theorem to obtain Eq. 5. �
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