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Abstract

Generalized additive models (GAMs) are a widely used class of models of interest to statis-
ticians as they provide a flexible way to design interpretable models of data beyond linear
models. We here propose a scalable and well-calibrated Bayesian treatment of GAMs using
Gaussian processes and leveraging recent advances in variational inference. We use sparse
Gaussian processes to represent each component and exploit the additive structure of the
model to efficiently represent a Gaussian a posteriori coupling between the components.
Although our scheme is motivated by GAMs, it can be used for arbitrary predictors, beyond
additive ones.
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1. Introduction

Generalized additive models (GAMs) are a class of interpretable regression models with
non-linear yet additive predictors (Hastie and Tibshirani, 1990). Their Bayesian treatment
requires the specification of priors over functions. Here, we use Gaussian processes (GPs)
(Rasmussen and Williams, 2006) and propose an approximate inference algorithm that
is both well-calibrated and scalable with both the number of data points and additive
components. We extend the variational pseudo-point GP approximation (Titsias, 2009;
Bauer et al., 2016) to posterior dependencies across GPs. This approximation provides
state-of-the art performance for GP regression and provides approximations to the posterior
distributions in the form of a GP. This approach has been successfully extended to the
multiple GP setting using a factorized (mean-field) approximation of the posterior across
GPs (Saul et al., 2016; Adam et al., 2016). However, it suffers from the known variance
underestimation of mean-field approximations and therefore can lead to poor predictions or
can bias learning (Turner and Sahani, 2011). Adam (2017) introduced additional structure
to the posterior distribution by allowing some coupling across GPs inducing variables but
this was at the cost of scalability.

2. Background

2.1. Regression with multiple GPs

We consider additive models with factorizing likelihood p(Y |X) =
∏N
n=1 p(yn |

∑
c fc(xn)),

where f1, . . . , fC are functions from Xc → R. The specific form of the likelihood is arbi-
trary. We denote F = {f1, ..., fC} such that p(F) constitutes the joint distribution over
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the processes. F(x) = [f1(x), ..., fC(x)] is the vector of function evaluations at x. We are
interested in computing the joint posterior p(F |X,Y ).

2.2. Variational Inference

The classical variational lower bound (or ELBO) to the marginal likelihood is given by

log p(Y |X) ≥ Eq(F)[log p(Y | F , X)]−KL[q(F) ‖ p(F)] = L(q). (1)

This is the optimization objective in the Variational Free Energy (VFE) approximation.
We choose q(F) to be a multivariate Normal distribution with mean µF and covariance
ΣF , which is not an approximation in the conjugate likelihood setting. This leads to

L(q) = Eq(F)[log p(Y | F)] +
1

2
tr[K−1

F ΣF ] +
1

2
µ|
FK

−1
F µF −

1

2
log |ΣF |. (2)

The expectation term in equation (2) is intractable in most cases and needs to be approx-
imated. See Hensman et al. (2015) for deterministic approximations and Salimbeni and
Deisenroth (2017) for stochastic approximations.

3. Optimal Gaussian Posterior in variational inference

Following Opper and Archambeau (2009), we derive the expression for the optimal ΣF by
noting that at the optimum, ∇ΣFL(q) = 0. This implies that

Σ−1
F = K−1

F +∇ΣF

[
Eq(F)[log p(Y | F)]

]
. (3)

3.1. Optimality in the additive case

In the additive case considered here, the gradient term in (3) is low rank and can be
parameterized by a vector λ ∈ RN as follows, with Λ = diag(λ):

Σ−1
F = K−1

F + (1⊗ Λ)(1⊗ Λ)|. (4)

This parameterization requires 2N values, equal to that of the classical single GP regression
setting described in Opper and Archambeau (2009). It also inherits the non-convexity of
this objective as highlighted by Khan et al. (2012).

3.2. Optimality in the sparse additive case

Following Adam et al. (2016) we introduce for each GP indexed by c some ‘inducing points’

Zc = [z
(1)
c , ..., z

(m)
c ] ∈ Xmc . The vector of associated function evaluations is given by Uc =

[u
(1)
c , ..., u

(m)
c ] = [fc(z

(1)
c ), ..., fc(z

(m)
c )]. We also define the stacked vector U = [U1, ...,Uc].

Following Adam (2017), we parameterize q(F) = q(U)
∏
c p(fc¬Uc |Uc). This choice

leads to a simplification of the lower bound (2) as

L(q) = Eq(F)[log p(Y | F , X)]−KL[q(U) ‖ p(U)]. (5)

Saul et al. (2016) considered the mean field case q(U) =
∏
c q(Uc) with each factor

parameterized as a multivariate normal distribution N (µUc ,ΣUc). This approach does not

2



Sparse Variational GAM

capture posterior dependencies across GPs. Adam (2017) parameterized q(U) as a multi-
variate normal distribution N (µU,ΣU) to include cross-GP coupling through the inducing
variables U. We extend this last approach but ask what the optimal q(U) should be. It
turns out to be (see Appendix A):

Σ−1
U,U = K−1

U,U +K−1
U,U

(∑
cKU,fc

)
Λ
(∑

c0 Kfc0 ,U

)
K−1

U,U. (6)

This form has again 2N parameters which becomes an over-parameterization as soon as
N > M2C2/2. Since we are interested in scalability, it is not of practical interest.

4. A new parameterization for q(U)

The second term of the sum in (6) can be expressed as BB| with B of size MC×N . Keeping
this structure arising from the additivity of the model, we propose the parameterization

Σ−1
U,U = K−1

U,U +BB|, (7)

with B of smaller sizeMC×M . This parameterization preserves the structure of the optimal
covariance. It requires storing M2C values, which is less than a direct representation of a
Cholesky factor of Σ−1

U,U that would require M2C2 parameters.

5. Summary of complexities

Time and space complexity of the sparse variational algorithms are summarized in Table 1.

Model Storage KL(q|p) Eq(ρ) log p(Y |ρ)
Mean field Saul et al. (2016) O(CM2) O(CM3) O(CM3 +NCM2)
Coupled (covariance) Adam (2017) O(C2M2) O(C3M3) O(C3M3 +NC2M2)
Coupled (precision) O(CM2) O(CM3) O(CM3 +NC2M2)

Table 1: Complexity of sparse variational additive models

6. Related work

Variational inference for the multi-GP setting has so far only used the mean-field (MF) ap-
proximation as described in Saul et al. (2016). When posterior dependencies are a quantity
of interest, a natural approach is to increase the complexity of the variational posterior to
capture these dependencies. This often results in a prohibitive increase in the complexity
of the inference. Different solutions have been proposed to tackle this problem. A first
approach in Giordano et al. (2015) consists of a two-step scheme where MF inference is
assumed to provide accurate posterior mean estimates. A perturbation analysis is then
performed around the MF posterior means to provide second order (covariance) estimates.
A second approach consists in ‘relaxing’ the MF approximation by extending the variational
posterior q(F) with additional multiplicative terms capturing dependencies while keeping
the computational complexity of the resulting inference scheme low (Tran et al., 2015; Hoff-
man and Blei, 2015). Our approach fits in this second family of extensions of the MF
parameterization. It is tailored to the VFE approximation to GP models and leverages its
sparsity to provide a fast and scalable inference algorithm.
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