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The need for privacy: theory

No one shall be subjected to arbitrary interference with his privacy, family,
home or correspondence, nor to attacks upon his honour and reputation.
Everyone has the right to the protection of the law against such interference
or attacks.

—Universal Declaration of Human Rights, Article 12



The need for privacy: practice

I Lack of data is a major impediment to development of personalised medicine, but
data cannot be shared without strong privacy

I The European General Data Protection Regulation (GDPR) coming to force in
May 2018 sets strict conditions for use of private information with huge fines for
breaches

I ML models retain a lot of private information, vulnerable to model inversion
attacks

I Simple methods without strong theoretical guarantees cannot be relied upon in
the long term



ε-differential privacy (DP; Dwork et al., 2006)

Definition

An algorithm M operating on a data set D is said to be ε-differentially private
(ε-DP) if for any two data sets D and D′, differing only by one sample, the
probabilities of obtaining any result S fulfil

Pr(M(D) ∈ S)

Pr(M(D′) ∈ S)
≤ eε.



(ε, δ)-differential privacy

Definition

An algorithm M operating on a data set D is said to be (ε, δ)-differentially private
((ε, δ)-DP) if for any two data sets D and D′, differing only by one sample, the
probabilities of obtaining any result S fulfil

Pr(M(D) ∈ S) ≤ eεPr(M(D′) ∈ S) + δ.



DP release of a function value f (D)

1. Evaluate the sensitivity of f

∆pf = max
‖D−D′‖=1

‖f (D)− f (D′)‖p.

2. Compute

M(D) = f (D) +
∆pf

ε
η

with

I Laplace mechanism: Pure ε-DP with p = 1 and

η ∼ Laplace(0, 1)

I Gaussian mechanism: (ε, δ)-DP with p = 2 and

η ∼ N (0, 2 ln(1.25/δ))



DP choice among alternatives

1. Evaluate the sensitivity of the utility u(D, r) over a choice between r ∈ R

∆u = max
r∈(R)

max
‖D−D′‖=1

|u(D, r)− u(D′, r)|.

2. Exponential mechanism: choose r with probability proportional to

p(r) ∝ exp

(
εu(x , r)

2∆u

)
.

This is ε-DP (McSherry & Talwar, FOCS 2007).



DP Bayesian inference
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DP mechanisms for Bayesian inference

Three approaches to DP Bayesian inference:

1. Drawing single samples from the posterior with the exponential mechanism
(Dimitrakakis et al., ALT 2014; Wang et al., ICML 2015; Geumlek et al., NIPS
2017)

2. Sufficient statistic perturbation (SSP) for exponential family models with
Laplace/Gaussian mechanism
(e.g. Foulds et al., UAI 2016; Honkela et al., 2016, Park et al., 2016)

3. Perturbation of gradients in SG-MCMC (Wang et al., ICML 2015) or VI (Jälkö et
al., UAI 2017) with Laplace/Gaussian mechanism



Approach 1: Posterior sampling mechanisms

I Elegant and seemingly broadly applicable, but

I ... requires bounded or Lipschitz likelihood (proofs can be challenging)

I ... one sample tells very little, cost of additional samples linear in the number of
samples

I ... privacy guarantee is conditional on exact sampling, which is infeasible for most
models



Approach 2: Sufficient statistic perturbation (SSP)

For exponential family models, all information about the data D = {x1, . . . , xn} is
contained in the sum of sufficient statistics

∑
i S(xi ).

This suggests a differentially private mechanism where we apply e.g. the Laplace
mechanism on the sum to obtain perturbed sufficient statistics

M(D) =
∑
i

S(xi ) + ξ,

with ξ ∼ Lap(0,∆1(S)/ε), and then proceed with the inference as usual (Foulds et al.,
UAI 2016; Honkela et al., 2016).



Consistency and efficiency

I Consistency: SSP DP estimates of posterior mean parameters converge to the
corresponding non-private values as n→∞

θ̂M =
τ +M(D)

n + n0
=
τ +

∑
i S(xi ) + ξ

n + n0

=
τ +

∑
i S(xi )

n + n0
+

ξ

n + n0
p→
τ +

∑
i S(xi )

n + n0
= θ̂NP .

I Convergence rate O(1/n) is optimal for any (ε, δ)-DP mechanism.



SSP results on drug sensitivity prediction

10
+0

10
+100

10
+200

10
+300

10
+400

10
+500

10
+600

10
+700

10
+800

Size of dataset (internal+external)

0.50

0.51

0.52

0.53

0.54

0.55

0.56

W
pc

-in
de

x

LR non-private data (d=10)
LR non-private data (d=64)
Non-private linear regression (LR)
Non-private lasso
Robust private LR
Private LR
Output perturbed LR
Functional mechanism LR

Mrinal Das, Arttu Nieminen



Practical challenges in efficient DP Bayesian learning

I Latent variables cannot be shared

I Asymptotic efficiency is insufficient to guarantee practical efficiency

I High dimensional data needs more DP noise

I More aggressive dimensionality reduction than usual often needed

I Further: a single outlier can impose huge sensitivity on the data

I Need to inject a lot of noise in DP to mask it
I The useful contribution such points have in learning is at best minimal



Decreasing the sensitivity by clipping

Clipping bound (data stdevs)
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Approach 3: DP gradient perturbation methods

Assume target L(θ,X ) =
∑

i Li (θ, xi ) (posterior or ELBO)

1. Each gi (θ) = ∇θLi (θ, xi ) is clipped s.t. ||gi (θ)||2 ≤ ct in order to calculate
gradient sensitivity

2. Subsampling xi with frequency q in order to use the privacy amplification theorem

3. Gradient contributions from all data samples in the mini batch are summed and
perturbed with Gaussian noise N (0, σ2I)

4. Total privacy cost can be computed from composition theorems or using the
moments accountant (Abadi et al., CCS 2016)



DPVI logistic regression results on UCI Adult
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Open questions / research directions

I Practical methods for making inference aware of the injected DP noise

I Cf. Williams & McSherry (NIPS 2010)

I Posterior uncertainty calibrated with the injected DP noise

I Many current methods ignore this, running inference as if there was no extra
noise

I Model engineering for DP: decreasing sensitivity

I Robust models should in theory be better for privacy, but need to make sure
our methods can take advantage of this



Conclusion

I DP as a strong privacy framework

I Sufficient statistic perturbation asymptotically consistent and efficient for
exponential family models

I For finite data: dimensionality reduction and clipping the data are essential for
obtaining better performance

I DPVI and DP-SG-MCMC applicable to more general models

I DP can be combined with encryption to run securely on distributed data (e.g.
Heikkilä et al., NIPS 2017)
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