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1
What is the outlier -robust inference?

Samples are generated from some unknown distribution .

Ṍ Ṍ
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Main body Contamination

Main body Contamination

We aim at placing an estimated probability distribution close to 
the main body of the unknown distribution .



2Maximum likelihood estimation

ÅEstimate by using .

ÅGeneralization error is measured by KL divergence :

Empirical approximation

Maximum likelihood estimation is sensitive to outliers 

because it treats all data points equally. 



3
Robust divergences

(Basuet al. [1998]) 

͡divergence (density power divergence)

d͢ivergence

(Fujisawa and Eguchi. [2008]) 



4Robust divergence minimization

Minimizing empirical ͡or d͢ivergence instead of KL

Density power weights

Ṍ Ṍ

Main body Contamination

Outliers have small .

We want to model the distribution

of the main body of data .

The likelihood weighted according to the power of the 
probability for each data point .
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Bayesian inference (reformulation)

Reformulation of Bayesian inference

Cross entropy :

Solution

: random variable

: prior distribution

Bayes theorem

Zellner [ 1988 ] , Zhu et al. [ 2014 ]



6
Variational inference

This is often intractable analytically, we need some

approximation method .

Restrict the domain of the optimization

problem to analytically tractable distributions

Å is called the evidence lower -bound (ELBO ).

Å This method is called variational inference.



Summary up to now

Maximum Likelihood estimation

Variational inference

Robust estimation
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Bayesian Inference

How to incorporate robust

divergence property ?
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Interpretation

Maximum Likelihood estimation

Bayesian Inference

seems like...

Expected 
likelihood

Regularization:
close to prior
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Robust inference

͡Cross entropy :
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Variational inference based on robust divergence

͡Cross entropy :

Conjugate relation is broken in this formulation .

Analytical solution is intractable .

Kinds of ¬pseudoposteriorº
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Variational inference based on robust divergence

͡Cross entropy :

Let us use variational inference by restricting

the domain of the optimization .

Robust variational inference



Proposing method

Maximum Likelihood estimation

Variational inference

Robust estimation
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: random variable : random variable

Bayesian Inference

Variational inference

Robust Inference
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Analysis based on influence function (IF)

Empirical distribution :

Contaminated version of at :

: contamination proportion

(Huber and Ronchetti [2011]) 

For a static and empirical distribution , IF at point is defined as:

·We can analyze the robustness through IFs.

·IFs represent relative bias of a estimated static caused by outliers .
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How to use IFs ?

What we want to know is predictive distribution .

2. How much is the predictive distribution affected by outliers ?

1 . Investigate whether or not .

If it diverges, the model can be sensitive to small 
contamination of data .
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IF of variational inference

IF of variational inference

Å For usual variational inference,

Å For ͡-variational inference,

: satisfies first order condition

corresponds to the

variational parameter
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IF of some specific models

Input related outlier :

Å Let us investigate whether . 

Å Consider regression and logistic regression for Bayesian 
neural networks.

Output related outlier :

Behavior of

: IF is unbounded.

: IF is bounded for input related outliers, but 
unbounded for output related outliers.

IF of our proposed method is always bounded.



Experiments on the UCI dataset

Å Neural net which has two hidden layers each with 20 units 
and the ReLU activation function . 

Å We used the re -parameterization trick with 10 MC samples.

Å We determine ͡ or ͢ by cross-validation. ( from 0.1 to 0.9 for the 

experiment. We found that range from 0.1 to 0.5 is enough.)

Å We added outliers to training data with proportion increased 
from 0% to 20%.
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Conclusions

1. We proposed an outlier - robust pseudo -Bayesian

variational method by replacing the KL divergence

used for data fitting to a robust divergence .

2. We analyzed our proposed method by using influence

functions analytically and numerically .

3. We confirmed usefulness of our proposed method on

the UCI datasets by using Bayesian neural nets .


