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Summary

■ Monte Carlo estimators lie at the heart of many algorithms, e.g. importance
sampling, variational inference, generative adversarial networks.

■ Variance of Monte Carlo estimators can have a profound effect on algorithmic
efficiency and robustness.

■ When the sampling distribution is tractable, we can leverage differentiable
structure to construct new estimators.

■ We introduce Taylor Residual Estimators that leverage known moments to attain
lower variance than the naive Monte Carlo estimator.

■ We show how to construct these estimators using automatic differentiation,
analyze their variance, and apply them to a variational inference problem.

Taylor Residual Estimators

■ Let X ∈ RD be a random variable with distribution π with known moments.
■ We want to estimate Eπ [f ] =

∫
f (x)π(dx), for function f : RD 7→ R

■ Standard Monte Carlo estimator: sample from π and compute sample mean:

x(n) ∼ π, f̂ =
1

N

N∑
n=1

f (x(n)). (1)

■ Can be inefficient to ignore known structure in f and π.
■ Denote the mth moment of π about point x0 as

M(m)
x0

=

∫
(x− x0)

mπ(dx) . (2)

■ Decompose f into (i) 1st-order Taylor expansion around x0 and (ii) the residual:

f (x) = f (x0) + (x− x0)
⊺
[
∂f

∂x
(x0)

]
︸ ︷︷ ︸

≜f
(1)
x0 (x)

+R(1)
x0
(x), (3)

where the remainder R(1)
x0 (x) is a function of higher-order derivatives of f .

■ We can re-write the target expectation as

Eπ[f ] = Eπ

[
f (1)
x0
(x) +R(1)

x0
(x)

]
= f (x0) + Eπ[(x− x0)]

⊺
[
∂f

∂x
(x0)

]
+ Eπ

[
R(1)

x0
(x)

]
= f (x0) +M(1)⊺

x0

[
∂f

∂x
(x0)

]
+ Eπ

[
R(1)

x0
(x)

]
,

■ In general, we can use an M th-order Taylor expansion about x0 and write the
expectation as

Eπ[f ] = f (x0) +
∑
m

M(m)
x0

[
∂mf

∂xm
(x0)

]
+ Eπ

[
R(M)

x0
(x)

]
. (4)

In this case the Taylor remainder R(M)
x0 (x) can be found from the (M + 1)st order

derivatives of f .
■ The randomness in the estimators in Eqs. (3) and (4) comes from the remainder

term. This is reminiscent of Rao-Blackwellization.
■ Taylor residual estimators (TREs) estimate these remaindor terms.
■ TREs can also be interpreted as control-variate estimators:

Eπ[f ] = f (x0) +M(1)⊺
x0

[
∂f

∂x
(x0)

]
+R(1)

x0
(x) (5)

= f (x)−
(
M(1)

x0
− (x− x0)

)⊺
[
∂f

∂x
(x0)

]
(6)

Variance Analysis

Big Question: When does the TRE have lower variance?
■ Recall the MC and first order Taylor Estimators where we define x0 = 0,
f0 = f (0), and f ′

0 =
∂f
∂x(0):

x ∼ π sample from distribution (7)

f̂ = f (x) Monte Carlo estimator (8)

f̂1 = f (x)− (f1(x)− E[f (1)]) First order Taylor residual estimator (9)

= f (x)− xf ′
0 + µf ′

0, (10)

where µ = E(x) is the known first moment of π(x).
■ The variances of the two estimators are then

V(f̂ ) = E
[
f̂ 2
]
− E[f ]2 (11)

V(f̂1) = V(f (x)− xf ′
0 + µf ′

0) = E
[
(f (x)− xf ′

0)
2
]
− (E[f ]− µf ′

0)
2
. (12)

■ We find conditions sucht that

V(f̂ )︸︷︷︸
MC

≥ V(f̂1)︸ ︷︷ ︸
TRE

.

■ First, substitute the variances with their definitions into the inequality

E[f (x)2]− E[f ]2 ≥ E
[
(f (x)− xf ′

0)
2
]
− (E[f ]− µf ′

0)
2
. (13)

Expanding the two quadratics, and canceling terms, we get

0 ≥ E[x2](f ′
0)
2 − 2f ′

0E[xf (x)]− µ2(f ′
0)
2 + 2f ′

0µE[f ] (14)

= (f ′
0)
2V(x)− 2f ′

0E[xf (x)] + 2f ′
0µE[f ] (15)

=⇒ 1 ≤ 2

f ′
0

C(x, f (x))
V(x)

=⇒ |f ′
0| ≤ 2

∣∣∣∣C(x, f (x))V(x)

∣∣∣∣ . (16)

■ Eq. (15) indicates a relationship between linear control-variate methods and
linear least-squares regression: V(x)−1C(x, f (x)) is the population least
squares solution for f regressed on x.

■ Variance reduction depends on whether the first order Taylor expansion of
f is within a cone around the linear least squares approximation.

(a) TRE has lower variance than MC estimator.

(b) TRE has higher variance than MC estimator.

Figure: Illustration of the conditions for TRE variance reduction. In each example, the gray area indicates the set of
linear approximations to f (x) that result in decreased variance, as indicated by Equation (15). (a) When the first-order
Taylor approximation of f at x0 (orange line) is in the gray region then the corresponding TRE will have smaller variance
than the Monte Carlo estimator. Functions that are close to linear in the range of π will have a larger region where
variance reduction occurs while highly nonlinear functions will have smaller regions. (b) The TRE estimator can have
larger variance than the MC estimator when the gradient at x0 falls outside of the gray region.

Example

Figure: Funnel target distribution

Setting:
Monte Carlo VI for a “Funnel” posterior distribution.

■ The variational objective
is the ELBO, which we approximate with Monte Carlo
by drawing a sample x ∼ q(x;λ), and then computing

f (x) = ln π(x,D)− ln q(x;λ). (17)

■ We use TREs to fit an approximation from two
different variational families: diagonal Gaussians and
Normalizing Flows.

Gaussian Approximation:
■ Define variational approximation q(x;λ) = N (λµ,λσ), with parameters λ.
■ We optimize the ELBO by using estimators of the gradient of Eq (16) with

respect to λ.
■ We compute the pathwise gradient estimator (reparameterization gradient) (?)

for both the MC and TRE estimators, and use these noisy gradient estimates in
gradient ascent.

■ At a random initialization of λ, we measure the variance of the first order Taylor
residual estimator to be about 320× lower than the 2-sample Monte Carlo
estimator.

■ We show the results of ELBO optimization in Figure 3 using a 2-sample Monte
Carlo estimator and a 2-sample TRE. The TRE has a smaller variance for more
iterations than the MC estimator allowing it to attain larger ELBO values for the
step-size. After convergence, we measure the TRE to have .8 the variance of
the MC estimator.

Normalizing Flows: We also apply the Taylor residual estimator to a more flexible
posterior approximation, a planar normalizing flow distribution (?).

■ We broke the ELBO into two pieces:

L(λ) = Eq[lnπ(x,D)]︸ ︷︷ ︸
model term

−E[ln q(x;λ)]︸ ︷︷ ︸
entropy term

. (18)

■ Unlike for the Gaussian variational family, where the entropy term can be
computed exactly, we must estimate the entropy term using Monte Carlo.

■ Here, we apply a TRE to the model term and use the simple Monte Carlo
estimator for the entropy term.

■ We found this resulted in consistent variance reduction compared to the Monte
Carlo estimator: At initialization we measure a 40× variance reduction over the
standard Monte Carlo estimator, and a 2× reduction at convergence.

■ Fig. 3b shows the results of optimization using the TRE where it is clear that the
optimization is more stable.

(a) Gaussian Approximation (b) Normalizing Flows Approximation (4 layers)

Figure: Comparision of Taylor residual and Monte Carlo estimators on Monte Carlo variational inference optimization
using both a Gaussian variational distribution and a normalizing flow. In both cases, TREs provide lower variance
gradient estimates and attain higher lower-bounds.
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