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Abstract

Variational inference is a popular technique to approximate a possibly intractable
Bayesian posterior with a more tractable one. Recently, boosting variational infer-
ence [11, 4] has been proposed as a new paradigm to approximate the posterior by a
mixture of densities by greedily adding components to the mixture. However, as is
the case with many other variational inference algorithms, its theoretical properties
have not been studied. In the present work, we study the convergence properties of
this approach from a modern optimization viewpoint by establishing connections
to the classic Frank-Wolfe algorithm. Our analyses yields novel theoretical in-
sights regarding the sufficient conditions for convergence, explicit sublinear/linear
rates, and algorithmic simplifications. Since a lot of focus in previous works for
variational inference has been on tractability, our work is especially important as
a much needed attempt to bridge the gap between probabilistic models and their
corresponding theoretical properties.

1 Introduction

Variational inference [1] is a method to approximate complicated probability distributions with
simpler ones. In many applications, calculating the exact posterior distribution is intractable, and
methods like MCMC while being flexible can also be prohibitively expensive. Variational inference
restricts the posterior to be a member of a simpler and more tractable set of distributions, and the
inference problem reduces to finding this member that can “closely” represent the true underlying
posterior. The closeness is typically measured in the KL sense.

One of the most commonly used family of distributions for the tractable set is the so called mean
field family, which assumes a factored structure. An example of such a family is the set of Gaussian
distributions with diagonal covariance matrices. While the inference is computationally efficient
due to the properties of Gaussian distributions, this family can be too restrictive. As such, the
approximated distribution is often not a good representation of the true posterior. A simple counter-
example is a multi-modal distribution. The mean field family will be able to only capture one of the
modes.

There have been a number of efforts to improve the approximation while retaining the simplicity of
Gaussian distributions. For example, one could consider approximating by a mixture of Gaussian
distributions and allowing more than just isotropic structures. A mixture of isotropic Gaussian
distributions is already a much more powerful and flexible model than a single isotropic Gaussian.
In fact, it is flexible enough to model any distribution arbitrarily closely [12]. While there has been
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significant algorithmic and empirical development for studying variational inference using mixture
models [11, 4, 8, 9], there have been limited theoretical studies. In this work, our aim is to bridge this
gap.

Our contributions are both algorithmic and theoretical:

• We connect boosting variational inference (Algorithm 2 in [4]) with the Frank-Wolfe
framework [5] enabling us to carefully analyze its convergence. We also thoroughly analyze
the assumptions essential to ensure global convergence and present an explicit rate (with
constants) for their conjectured O(1/T ) rate.

• We propose simpler variants of the same algorithm that retain the same strong theoretical
properties (fixed step size and closed-form line search in Algorithm 1).

• We provide sufficient conditions under which greedy algorithms achieve linear (O(e−T ))
convergence and therefore are much faster than what was previously conjectured.

• We present the Norm-Corrective Frank-Wolfe in Algorithm 2 which enjoys linear conver-
gence (Theorem 5) at the cost of a slightly larger computational cost. This algorithm allows
one to selectively reoptimize all the weights of the mixture efficiently at every iteration
resulting in much faster convergence in general.

2 Variational Inference Problem Setting

Say, we observe N data points x from some space. The Bayesian modelling approach consists
of specifying a prior π(z) on the data and the likelihood p(x|z) for some parameter vector z ∈ Z
where Z is a measurable set, for example RD [1]. One of the challenges of Bayesian inference
is that the posterior, obtained through Bayes theorem could be intractable because of a hard to
calculate normalization constant. Instead, the joint distribution is usually easier to evaluate i.e.
p(x, z). From a functional perspective, the posterior can be written as px(z) : Z→ R+

>0. We assume
that px(z) 6= 0 ∀z ∈ Z. We use px to represent the posterior and p for the joint distribution. The
goal of variational inference is to find a density from a constrained set of tractable densities Q with
support Q q : Q→ (0,∞), q ∈ Q that is close in the KL sense to the true posterior. The respective
optimization problem is:

min
q∈Q

DKL(q‖px). (1)

Note that an unconstrained minimization would yield q to be equal to the true posterior. Thus, one
would ideally want the set Q to be able to represent the parameter space Z well, while still retaining
tractability. The objective in Equation (1) is not computable as it requires access to px(z) [1]. Instead,
it is common practice to maximize the so called the evidence lower bound (ELBO), given by:

−E [log q(z)] + E [log p(x, z)] (2)
It is easy to see that equivalent to maximizing the ELBO, is solving the following optimization
problem:

min
q∈Q

DKL(q||p) (3)

While it is well known that DKL is strictly convex in q, its smoothness and strong convexity depends
on the choice of Q. [14, 4] showed that the smoothness constant can be bounded by the minimal
value obtained by all pdf functions of the densities in Q in their domain and [14] showed that the
strong convexity constant is equal to the respective maximal value. For simplicity in the following
we write DKL(q) instead of DKL(q||px).

3 Domain Restricted Densities for Variational Inference

A sufficient condition for smoothness of the DKL(q) is that the density q is bounded away from
zero [4]. We extend this result, showing the necessary condition for global smoothness of DKL(q) to
hold on the entire support Q.
Lemma 1. DKL(q) is Lipschitz smooth with constant L = 1

ε if and only if q/px : Q→ [ε,∞) with
ε > 0 i.e. is bounded away from zero in Q. A sufficient condition for smoothness of DKL(q) is
q : Q→ [ε,∞) with ε > 0 i.e. is bounded away from zero in Q.
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Smoothness is a mild assumption which is useful to measure the convergence of optimization
algorithms and was employed also in the variational inference setting [6]. Lemma 1 entails that the
proofs based on smoothness are valid only in some regions of the space. Therefore, we solve the
following optimization problem:

argmin
q∈conv(A)

DKL(q||px). (4)

Where A contains truncated densities from Q. As the original posterior px has support Z, the
choice of conv(A) as optimization domain is suboptimal wrt Q or conv(Q) as its support is a
subset A ⊆ Q ⊆ Z. The hope, is that conv(A) is a richer family of distributions than Q (i.e. mean
field variational inference) and is more tractable than both Q and conv(Q) from the optimization
perspective. Note that pA does not have to be in conv(A). If A contains non-degenerate truncated
Gaussian distributions then conv(A) contains pA which becomes the minimizer q? of Equation (4).

In the rest of the paper, we consider the set A as the set of non degenerate truncated distributions. We
assume that the elements in A have all the following:

A1. truncated densities with bounded support A

A2. q(z) ≥ ε > 0 ∀ z ∈ A and q is bounded from above by M

Theorem 2. The set A of non degenerate truncated distributions bounded from above and compact
support A is a compact subset ofH.

The proof is deferred to the Appendix D. Due to the convenient form of A we can also compute its
diameter as:
Corollary 3. Given a distribution q ∈ A, it holds that diam(A)2 ≤ maxq∈A 4‖q‖2 ≤ 4M2L(A)
where L(A) is the Lebesgue measure of the support A, which is bounded under the assumptions of
Theorem 2.

We will extensively discuss the impact of these assumptions on both the convergence and the
approximation quality in Section 4.

4 Functional Frank-Wolfe For Density Functions

In this section we explain the foundation of boosting via Frank-Wolfe in function spaces. In the
analysis of [13], the authors enforce a bounded polytope using functions in L1 with bounded L∞
norm. Instead, following the more traditional approaches of [5, 7, 10], we make no assumption on
the polytope other than being a compact subset of a Hilbert space H i.e. the functions must have
bounded L2 norm.

The curvature of a function f is defined as in [5]:

Cf,A := sup
s∈A, q∈conv(A)

γ∈[0,1]
y=q+γ(s−q)

2

γ2
D(y, q), (5)

where
D(y, q) := f(y)− f(q)− 〈y − q,∇f(q)〉.

It is known that Cf,A ≤ Ldiam(A)2 if f is L-smooth over conv(A). Due to Lemma 1, we know
that the DKL(q) with q ∈ A is smooth which implies that the curvature is bounded. Therefore,
DKL(q) is a valid objective for the FW framework. In each iteration, the FW algorithm queries a
so-called linear minimization oracle (LMO) which solves the optimization problem:

LMOA(y) := argmin
s∈A

〈y, s〉 (6)

for a given y ∈ H and A ⊂ H. As computing an exact solution of (6), depending on A, is often hard
in practice, it is desirable to rely on an approximate LMO that returns an approximate minimizer s̃ of
(6) for some accuracy parameter δ and the current iterate qt such that:

〈y, s̃− qt〉 ≤ δmin
s∈A
〈y, s− qt〉 (7)
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The Frank-Wolfe algorithm is depicted in Algorithm 1 and the Norm Correctvie variant in Algorithm 2.
Note that Algorithm 2 in [4] is a variant of Algorithm 1.

Algorithm 1 Affine Invariant Frank-Wolfe

1: init q0 ∈ conv(A)
2: for t = 0 . . . T
3: Find st := (Approx-)LMOA(∇f(qt))
4: Variant 0: γ = 2

t+2

5: Variant 1: γ = min
{
1, 〈−∇f(q

t),st−qt〉
Cf,A

}
6: Update qt+1 := (1− γ)qt + γst

7: end for

Algorithm 2 Norm-Corrective Frank-Wolfe

1: init q0 ∈ conv(A), and S := {q0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(qt))
4: S := S ∪ {zt}
5: Let b := qt − 1

L∇f(q
t)

6: Variant 0: qt+1 := argmin
z∈conv(S)

‖z − b‖22

7: Variant 1: qt+1 := argmin
z∈conv(S)

f(z)

8: Optional: Correction of some/all atoms
z0...t

9: end for

Theorem 4. Let the set A of non degenerate truncated Gaussian distribution have compact support
A ∈ Rd. Further assume that their means are in A and their covariance matrix before truncation is
given by σ2I with σ ≥ σmin > 0 with σmin being small enough such that pA ∈ conv(A). Let a and
b be the vertices of the diameter of A. Then, the information loss of the Affine Invariant Frank-Wolfe
algorithm (Algorithm 1) with some choice of the compact support A converges for t ≥ 0 as

DKL(qt||p) ≤ 4P (N (a, σ2
minI) ∈ A)

σ
d
2

min2
d
2K2

exp

(
1

2

diam(A)2

σ2
min

)
1

δ2t+ 2

+
2ε0
δt+ 2

− log p(zZ\A = 0)

where ε0 = DKL(q0||p) − DKL(q?||p), δ ∈ (0, 1] is the accuracy parameter of the employed
approximate LMO, p is the true posterior distribution and K := minµ∈AP (N (z,µ, σ2

minI) ∈ A).
Note that K is bounded away from zero.
Theorem 5. LetA ⊂ H be a compact set and let f : H→R be both L-smooth and µ-strongly convex
over the optimization domain. Then, the suboptimality of the iterates of Variant 1 of Algorithm 2
decreases geometrically at each step as:

εt+1 ≤ (1− β) εt, (8)

where β := δ2 µPWidth2

L diam(A)2 ∈ (0, 1], εt := f(qt)− f(q?) is the suboptimality at step t and δ ∈ (0, 1]

is the relative accuracy parameter of the employed approximate LMO.

In Theorem 5 we used the notion of pyramidal width:

PWidth(A) := min
K∈faces(conv(A))

q∈K
r∈cone(K−q)\{0}

PdirW (K ∩A, r, q).

For an in depth description of the PWidth, see [7]. In the continuous setting, the pyramidal width
can be arbitrarily small. For such a reason, quantization of the mean vector is sufficient to ensure
that the pyramidal width is bounded away from zero. To obtain a linear convergence rate for Variant
0 of Algorithm 2 one needs to upper-bound the number of “bad steps”. This notion comes from
the Pairwise and Away step Frank-Wolfe [7]. Let vt be the away vertex vt = LMOS(−∇f(qt)),
the exponential decay is not guaranteed when we remove all the weight from vt but |St| = |St+1|.
Unfortunately, the tightest known bound for Variant 0 on the number of good steps is k(t) ≥
t/(3|A|! + 1). The rate of Variant 0 is given in the Appendix. While this approach is unsatisfactory,
the linear convergence of Frank-Wolfe is an active field of research beyond the scope of this paper. In
any case, Algorithm 2 is potentially much faster than Algorithm 1 at the cost of a greater computation
complexity per iteration. Furthermore, Algorithm 1 is already linearly convergent if the optimum
lies in the relative interior of conv(A) as shown in [3]. Therefore, in practice, the norm corrective
variant can achieve linear convergence and in general converges faster than Algorithm 1. We provide
experimental validation of this claim in the Appendix.
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Figure 1: Convergence of Algorithm 2 compared
to 1 on a truncated cauchy distribution

-3 -2 -1 0 1 2 3

support
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

de
ns

ity
 v

al
ue

0 10 20 30 40 50 60 70 80 90 100

size ensemble
10-5

10-4

10-3

10-2

10-1

100

su
bo

pt
im

al
ity

Figure 2: Convergence of Algorithm 2 compared
to 1 on a truncated mixture of Gaussian distribu-
tions

A Notation.

We represent vectors by small letters bold, e.g. x and matrices by capital bold, e.g., X. Given a
non-empty subset A of some Hilbert space H and let conv(A) denote its convex hull. A is often
called atom set in the literature, and its elements are called atoms. Given a closed set A, we call its
diameter diam(A) = maxz1,z2∈A ‖z1 − z2‖ and its radius radius(A) = maxz∈A ‖z‖. The support
of a density function q is a measurable set denoted by capital letters sans serif i.e. Z. Sometimes, we
write the domain of a density function with the same notation, but if the domain and the support do not
coincide it would be made explicit. The inner product between two density functions p, q : Z→ R in
L2 is defined as 〈p, q〉 :=

∫
Z
p(z)q(z)dz.

B Experimental Proof of Concept

Synthetic data In this section we empirically observe the convergence of Algorithms 1 and 2 on a
toy task verifying that the convergence follows our analysis. In particular, we consider two simple
forms for the posterior distribution in 1 dimension, a heavy tailed Cauchy distribution and a mixture
of Gaussian distributions. We approximate both distributions using the line search and the fully
corrective variants of FW. As expected, even after the rough approximations we performed, the fully
corrective perfectly fits the target distribution in a very limited number of iterations. To ensure linear
convergence we performed quantization of the mean vectors (stride of 0.0001). In both examples we
used L = 15 and L = 5 for line search and the fully corrective respectively. To find the weight in the
fully corrective we used standard semidefinite-quadratic programming (cvx solver1). As expected,
while being more expensive per iteration, Algorithm 2 converges much faster in terms of number
of iterations. Therefore, we showed that linear convergence is achievable using Algorithm 2 while
minimizing the DKL.

Discussion In [4] the authors perform an extensive experimental evaluation showing the remarkable
practical performances of Algorithm 1. On the other hand, they do not truncate the Gaussian
distributions in the experiments and still observe excellent convergence properties. Note that, provided
that the algorithm is initialized well enough, q/p can be bounded away from zero which entails that
there exist a finite L which upper bounds the smoothness constant. As they regularize the LMO with
the log of the determinant of the covariance matrix, their set A has bounded diameter. Therefore,
their algorithm is linearly convergent whenever the true posterior is in the relative interior of conv(A)
and sublinear otherwise.

Real Data To illustrate the practical utility of the boosting framework, we implement the algorithm
for the real world application of predicting whether a chemical is reactive or not (i.e. the response
vector y is binary valued) from its features X. We use the CHEMREACT dataset which contains
26733 chemicals, each with 100 features. The training data contains 24059 points, while the rest

1http://cvxr.com/cvx/
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Figure 3: Application of different weights optimization techniques for ChemReact dataset: norm
corrective (Algorithm 2), line search [4] and decaying fixed step size (Algorithm 1 variant 0)

form the testing dataset. For the prediction task, we employ the use of Bayesian Logistic Regression
with a spherical prior on the regression coefficients w ∼ N (0, I). If xi ∈ R100 and yi ∈ {0, 1} are
the ith feature vector and response value respectively, then the logistic likelihood function can be
written as:

log p(y|w;X) :=
∑
i

yisigmoid(x>i w)

+ (1− yi)[1− sigmoid(x>i w)],

where we represent X as the feature matrix formed by stacking xi, y is the response vector, and the
sigmoid function is sigmoid(α) = 1

1+exp(−α) . It is straightforward to see that the posterior for the
above model does not have a closed form expression, nor is it easy to sample from it. Typically, even
for such a relatively simple model, MCMC techniques can be prohibitively slow, and so mean field
variational inference is often used.

We use the mean field variational inference to initialize our boosting algorithm, and we show that the
mixture of gaussians from the mean field field family gives a better training fit and testing accuracy
than the vanilla mean field inference. We reduce the variance of the gradient estimator with the
Rao-Blackwellization [2]. To illustrate the importance of the connections with the Frank Wolfe
algorithm, we implement three different methods of optimizing over the weights of the mixture. First
of all, we implement the line search technique minimizing the original objective already proposed
in [4]. However, a simpler fixed step size also guarantees convergence as per the FW analysis, and
so does the fully corrective step that optimizes over all the previous weights. This is illustrated in
Figure 3. Specifically, we report the training data log-likelihood values to show that the three different
techniques offer varying rates of training data fit as expected. The training data fit also translates to
the test data accuracy, which we present as the area under the curve (AUC) of the receiver operator
characteristic.

C Proof of Lemma 1

If q/p is bounded away from zero, DKL(q) is trivially smooth as it’s gradient has bounded norm.

Viceversa, we need to show that if DKL(q) is smooth then q/p is bounded away from zero. Since
DKL(q) is smooth, its gradient is absolutely continuous and therefore differentiable almost every-
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where with bounded norm. Now, ∇DKL(q) = log q
p and its derivative exists everywhere and is

bounded except for a ball around the origin with arbitrary small radius. If by contradiction this ball is
in the domain Z (i.e. q/p is not bounded away from zero) this set does not have Lebesgue measure
zero and thus DKL(q) is not smooth as its gradient is not absolutely continuous. Note that the DKL

can be locally smooth if p is arbitrarily small in the same region of q and they both decrease equally
fast.

A sufficient condition is q bounded away from zero everywhere in its support as it would imply
q/p ≥ ε > 0.

D Proof of Main Results:

Theorem’ 2. The set A of non degenerate truncated distributions bounded from above and compact
support A is a compact subset ofH.

Proof.

diam(A)2 = max
p,q∈A

‖p− q‖2

≤ max
p,q∈A

(‖p‖+ ‖q‖)2

≤ max
q∈A

4‖q‖2

q ∈ A is defined everywhere in A and is bounded in infinity norm by assumption. The result of the
integral is bounded as A is compact. In particular:

‖q‖2 =

∫
A

q(z)2dz

≤M2

∫
A

1dz

Now,
∫
A
1dz is the Lebesgue measure of the set A which is finite as A is compact and non zero as A

is full-dimensional.

For truncated gaussian distributions with diagonal covariance matrix we compute a tighter diameter:

‖q‖2 ≤
∫
A

q(z)2dz

≤
∫
A

N (z,µ, σ2I)2δA(z)

P (N (z,µ, σ2I) ∈ A)2
dz

≤
∫
Z

N (z,µ, σ2I)2

P (N (z,µ, σ2I) ∈ A)2
dz

≤ 1

P (N (z,µ, σ2I) ∈ A)2

∫
Z

N (z,µ, σ2I)2dz

and ∫
Z

N (z,µ, σ2I)2dz =
1

σd(2
√
π)d

Therefore, the maximum norm is:
1

σdmin(2
√
π)dminµ∈AP (N (z,µ, σminI) ∈ A)2

We call K2 := minµ∈AP (N (z,µ, σ2
minI) ∈ A)2. and write:

diam(A)2 ≤ 4

σdmin(2
√
π)dK2
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Theorem 6. Let the set A satisfy A1 and A2. Then, it holds that:

Cf,A ≤ Ldiam(A)2 ≤ 4

σdmin(2
√
π)dK2ε

Proof. The proof if trivial after showing Theorem 2 and recalling that L = 1
ε

Theorem’ 4. Let the set A of non degenerate truncated Gaussian distribution have compact support
A ∈ Rd. Further assume that their means are in A and their covariance matrix before truncation is
given by σ2I with σ ≥ σmin > 0 with σmin being small enough such that pA ∈ conv(A). Let a and
b be the vertices of the diameter of A. Then, the information loss of the Affine Invariant Frank-Wolfe
algorithm (Algorithm 1) with some choice of the compact support A converges for t ≥ 0 as

DKL(qt||p) ≤ 4P (N (a, σ2
minI) ∈ A)

σ
d
2

min2
d
2K2

exp

(
1

2

diam(A)2

σ2
min

)
1

δ2t+ 2

+
2ε0
δt+ 2

− log p(zZ\A = 0)

where ε0 = DKL(q0||p) − DKL(q?||p), δ ∈ (0, 1] is the accuracy parameter of the employed
approximate LMO, p is the true posterior distribution and K := minµ∈AP (N (z,µ, σ2

minI) ∈ A).
Note that K is bounded away from zero.

Proof. To show the result we essentially need to compute Cf,A for the particular choice in the
theorem statement. Let a,b be two points A such that the minimum value of any q ∈ A is attained
in b by a density centered in a (wlog). It is trivial to show that these points are the vertices of the
diameter of the support A.

First of all, recall that:

diam(A)2 ≤ 4

σdmin(2
√
π)dK2

The minimal value of any q ∈ A can be computed explicitly as by assumption is reached in b:

ε =
N (b;a, σ2

minI)

P (N (a, σ2
minI) ∈ A)

=
1

L
.

Therefore:

Ldiam(A)2 ≤ P (N (a, σ2
minI) ∈ A)

N (b;a, σ2
minI)

· 4

σdmin(2
√
π)dK2

=
4P (N (a, σ2

minI) ∈ A)

σdmin(2
√
π)dN (b;a, σ2

minI)K
2

=
4P (N (a, σ2

minI) ∈ A)

σ
d
2

min2
d
2K2

exp

(
1

2

‖a− b‖2

σ2
min

)

=
4P (N (a, σ2

minI) ∈ A)

σ
d
2

min2
d
2K2

exp

(
1

2

diam(A)2

σ2
min

)

As we assumed that σmin is small enough to approximate perfectly pA the proof is concluded.

Theorem’ 5. Let A ⊂ H be a compact set and let f : H→R be both L-smooth and µ-strongly
convex over the optimization domain.

Then, the suboptimality of the iterates of Variant 0 of Algorithm 2 decreases geometrically at each
“good step” as:

εt+1 ≤ (1− β) εt, (9)

where β := δ2 µPwidth2

L diam(A)2 ∈ (0, 1], εt := f(xt)− f(x?) is the suboptimality at step t and δ ∈ (0, 1]

is the relative accuracy parameter of the employed approximate LMO.
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Proof. The proof is a trivial extension of the one presented in [7]. It only differs in the use of the
smoothness upper bound. Let vt = LMOS(−∇f(qt)) The update of Algorithm 2 yields:

f(qt+1) = min
qt+1∈conv(S)

f(qt) + γ〈∇f(qt), qt+1 − qt〉

+
γ2

2
L‖qt+1 − qt‖2

≤ min
γ∈[0,1]

f(qt) + γ〈∇f(qt), z̃t − vt〉

+
γ2

2
L‖z̃t − vt‖2

= f(qt)− 〈∇f(q
t), z̃t − vt〉

2

2L‖z̃t − vt‖2
.

This upper bound holds for Algorithm 2 as minimizing the RHS of the first equality coincides with
the update of Algorithm 2. The last equality comes from the assumption that we are performing a
good step. Using εt = f(q?)− f(qt), we can lower bound the error decay as

εt − εt+1 ≥
〈∇f(qt), z̃t − vt〉

2

2L‖z̃t − vt‖2
. (10)

The rest of the proof is identical to the one in [7] for the Pairwise Frank-Wolfe.
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