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Abstract

Approximate Bayesian computation (ABC) is a method for Bayesian inference
when the likelihood is unavailable but simulating from the model is possible. How-
ever, many ABC algorithms require a large number of simulations and running
the simulation model can be costly. To reduce the computational cost, Bayesian
optimisation (BO) and surrogate models such as Gaussian processes have been pro-
posed. Bayesian optimisation enables one to intelligently decide where to evaluate
the model next, but standard BO strategies are designed for optimisation and not
specifically for ABC inference. Our paper addresses this gap in the literature. We
propose to compute the uncertainty in the ABC posterior density, which is due to
lack of simulations to estimate this quantity accurately, and define a loss function
that measures this uncertainty. We then propose to select the next evaluation loca-
tion to minimise the expected loss. Experiments show that the proposed method
often produces the most accurate approximations as compared to common BO
strategies. Note: this work is currently under review in a journal and a full-length
version is available as a non-refereed pre-print (https://arxiv.org/abs/1704.00520)

1 Introduction

We consider the problem of Bayesian inference of some unknown parameter θ ∈ Θ ⊂ Rp of a
simulation model. Such models are typically not amenable to any analytical treatment and can be
only simulated with any parameter θ ∈ Θ to produce data xθ ∈ X . This renders standard Bayesian
inference techniques inapplicable because the likelihood function cannot be directly evaluated.
Approximate Bayesian computation (ABC) replaces likelihood evaluations with model simulations,
see e.g. [14, 22, 12] for an overview. The main idea of the basic ABC algorithm is to draw a parameter
value from the prior distribution, simulate a data set with the given parameter value, and accept
the value as a draw from the (approximate) posterior if the discrepancy between the simulated and
observed data is small enough. This algorithm produces samples from the approximate posterior

πABC(θ |xobs) ∝ π(θ)

∫
πε(xobs |x)π(x |θ) dx, (1)

where π(θ) is the prior probability density, πε(xobs |x) ∝ 1∆(xobs,x)≤ε and ∆ : X × X → R+ is
the discrepancy that tells how different the simulated and observed data sets are. The threshold ε
controls the trade-off between the accuracy of the approximation and computational cost.

Algorithms based on Markov Chain and sequential Monte Carlo [15, 20, 1, 21, 14, 11] as well as
different modelling strategies, e.g. [25, 2, 3, 4, 18], and especially Gaussian process (GP) modelling
[24, 16, 10, 5, 9], have been proposed to improve the computational efficiency of ABC. In [5]
Bayesian optimisation (BO) was used to speed up inference. However, the BO strategies they used to
demonstrate their approach have not been designed for ABC originally.
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In the following, we formulate the ABC inference in a fully probabilistic and query-efficient frame-
work. Specifically, we use Bayesian modelling to quantify the “computational uncertainty” in the
ABC posterior curve (or some related quantity of interest) which is due to the lack of simulations to
estimate it accurately. We then define a loss function L that could measure e.g. the overall uncertainty
in the probability density πABC or the uncertainty in a particular point estimate of interest such as
posterior mean. In this framework, our aim is to choose the next evaluation location θ∗ such that the
expected loss, after simulating the model at this location, is minimised. That is, we minimise

Ex∗ | θ∗,D1:t
(L(π(πABC |x∗,θ∗, D1:t))) =

∫
L(π(πABC |x∗,θ∗, D1:t))π(x∗ |θ∗, D1:t) dx∗, (2)

with respect to θ∗, where we need to average over the unknown simulator output x∗ at parameter θ∗

using our model for the new simulator output π(x∗ |θ∗, D1:t) and where D1:t is the training data of
simulator-output, parameter pairs gathered this far. In this text we focus on sequential setting and
myopic strategies (i.e. selecting one evaluation parameter at a time) although our approach can be
generalised. Entropy search in global optimisation [7, 8] and probabilistic numerics literature [6]
share similar ideas. However, different from these approaches, our interest is to design the evaluations
to minimise the uncertainty in a quantity that itself describes the uncertainty of the parameters of a
costly simulation model.

2 GP modelling for ABC and optimal acquisition

The framework briefly outlined above requires some modelling assumptions. While other choices are
also possible, as in [5, 9], we model the discrepancy by a Gaussian distribution for each parameter
value θ, i.e. ∆θ ∼ N (f(θ), σ2

n) for some unknown suitably smooth function f : Θ → R and
variance σ2

n ∈ R+ both of which need to be estimated. We place a Gaussian process prior on f
so that f ∼ GP(µ(θ), k(θ,θ′)). We set µ(θ) = 0 and use the squared exponential covariance
function k(θ,θ′) = σ2

f exp(−
∑p

i=1(θi − θ′i)2/(2l2i )). Conditioned on the obtained training data
D1:t = {(∆i,θi)}ti=1 and the GP hyperparameters φ = (σ2

f , l1, . . . , lp, σ
2
n), our knowledge of the

function f evaluated at an arbitrary point θ ∈ Θ is f(θ) |D1:t,θ,φ ∼ N (m1:t(θ), v2
1:t(θ)), where

m1:t(θ) = k(θ,θ1:t)K
−1(θ1:t)∆1:t, v2

1:t(θ) = k(θ,θ)− k(θ,θ1:t)K
−1(θ1:t)k(θ1:t,θ) (3)

and K(θ1:t) = k(θ1:t,θ1:t) + σ2
nI. Above we defined k(θ,θ1:t) = (k(θ,θ1), . . . , k(θ,θt))

T and
similarly for k(θ1:t,θ), k(θ1:t,θ1:t)ij = k(θi,θj) for i, j = 1, . . . , t and ∆1:t = (∆1, . . . ,∆t)

T .

In principle, the uncertainty in GP hyperparameters φ can be taken into account but in the following
we assume that φ is either known or MAP-estimate is used to determine its value. If we knew f , the
(unnormalised) ABC posterior π̃ABC(θ) and the acceptance probability pa(θ) could be computed
as π̃ABC(θ) = π(θ)pa(θ), and pa(θ) = Φ ((ε− f(θ))/σn). We do not know f accurately due to
limited training data but, using the GP assumptions, we can derive the probability law and closed-form
equations of different statistics for π̃ABC for each θ. For instance, we obtain

E(π̃ABC(θ) |D1:t) = π(θ) Φ

(
(ε−m1:t(θ))/

√
σ2
n + v2

1:t(θ)

)
. (4)

We consider the following loss function for model-based ABC inference

L(π(πABC |D1:t)) =

∫
Θ

V(π̃ABC(θ) |D1:t) dθ =

∫
Θ

π2(θ)V(pa(θ) |D1:t) dθ, (5)

where the variance is taken with respect to π(f |D1:t). We call the function as the integrated variance
loss function. It measures the uncertainty in the unnormalised ABC posterior density averaged over
the parameter space Θ. Based on our GP assumptions, the expected integrated variance (abbreviated
as “expintvar”) after running the simulation model with parameter θ∗ can be shown to be

L1:t(θ
∗) = E∆∗ | θ∗,D1:t

∫
Θ

π2(θ)V(pa(θ) |∆∗,θ∗, D1:t) dθ (6)

= 2

∫
Θ

π2(θ)

[
T

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)
,

√
σ2
n + v2

1:t(θ)− τ2
1:t(θ,θ

∗)

σ2
n + v2

1:t(θ) + τ2
1:t(θ,θ

∗)

)

− T

(
ε−m1:t(θ)√
σ2
n + v2

1:t(θ)
,

σn√
σ2
n + 2v2

1:t(θ))

)]
dθ,

(7)
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where the variance of pa(θ) is taken with respect to π(f |∆∗,θ∗, D1:t), the function T (·, ·) is the
Owen’s t-function that can be computed efficiently using the algorithm in [19] and that satisfies

T (h, a) =
1

2π

∫ a

0

e−h
2(1+x2)/2

1 + x2
dx, (8)

and τ2
1:t(θ,θ

∗) = cov2
1:t(θ,θ

∗)/(σ2
n + v2

1:t(θ
∗)), where cov1:t(θ,θ

∗) = k(θ,θ∗) −
k(θ,θ1:t)K

−1(θ1:t)k(θ1:t,θ
∗) is the posterior covariance between the evaluation point θ and the

candidate location for the next evaluation θ∗. Derivation of this result can be found in our full paper.

Computing the integral in Equation (7) can be done using grid integration in low dimensions or using
importance sampling (IS). In the latter case the IS proposal πq can be chosen to be current variance
surface interpreted as a probability density function (pdf) which has similar formula as the integrand
in Equation (7). Sampling from πq is not straightforward but can be done using standard MCMC
techniques. The new evaluation location is chosen to minimise the expected loss, that is

θt+1 ∈ {θ ∈ Θ : θ = arg min
θ∗∈Θ

L1:t(θ
∗)}, (9)

where the right hand side is a set of parameters because the minimiser may not be unique. The
resulting algorithm for estimating the ABC posterior is outlined as Algorithm 1.

Algorithm 1 GP-based ABC inference using the expected integrated variance acquisition function.
1: Generate initial training locations θ1:t0 ∼ π(·)
2: for t = 1 : t0 do
3: Simulate xt ∼ π(· |θt) and compute ∆t ← ∆(xobs,xt)
4: end for
5: for t = t0 : tmax − 1 do
6: Estimate GP hyperparameters φMAP

1:t using D1:t

7: Precompute Cholesky factorisation for the GP prediction
8: Simulate evaluation points θ(i) and IS weights ω(i) for i = 1, . . . , s by sampling from πq(·)
9: Precompute the second term in Equation (7)

10: Obtain θt+1 by solving the optimisation problem in Equation (9)
11: Simulate xt+1 ∼ π(· |θt+1) and compute ∆t+1 ← ∆(xobs,xt+1)
12: Update the training data D1:t+1 ← D1:t ∪ {(∆t+1,θt+1)}
13: end for
14: Estimate GP hyperparameters φMAP

1:tmax
using D1:tmax

15: Simulate samples ϑ1:n from the estimate of ABC posterior given by Equation (4)
16: return ϑ1:n as a sample from the approximate posterior density

Instead of strictly following the outlined framework, one could also evaluate the simulation model
where the current uncertainty of π̃ABC is maximised, or choose the location that is expected to produce
largest reduction in the uncertainty of π̃ABC in this particular location. We call these alternative
approaches, albeit more heuristic, as maxvar and expdiffvar, respectively. One could also interpret the
current variance of π̃ABC as a pdf and sample the new evaluation point from it (called rand_maxvar).

3 Results

We compare our methods to expected improvement (EI) and lower confidence bound (LCB) criteria.
We also draw points sequentially from the uniform distribution, abbreviated as “unif”. MATLAB and
GPstuff [23] are used for the experiments, however, the algorithms in this article are also available
in the ELFI (engine for likelihood-free inference) Python software package [13]. We first consider
synthetic 2D simulation models: 1) a unimodal density with two correlated variables, 2) a bimodal
density, 3) a density where the first parameter is (almost) unidentifiable, and 4) a banana shaped
density, all with a uniform prior. The integration and sampling required by expintvar and rand_maxvar
strategies are performed in a 502 grid and the initial training set size is t0 = 10. The threshold ε is
fixed. TV denotes the total variation distance between the estimated and the true baseline ABC density.
The results in Figure 1 show that the expintvar is the best method overall but also rand_maxvar
produces good results. Of the common alternatives, LCB is clearly the best and produces results
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Figure 1: Median of the TV distance between the estimated and the true ABC posterior over 100
experiments. Vertical lines show the 95% confidence interval of the median.

with similar accuracy as rand_maxvar. The performance of the EI strategy is poor due to excessive
exploitation.

As an another test case, we consider a simulation model that describes transmission dynamics of
bacterial infections in day care centers. The model has three parameters: an internal infection
parameter β ∈ [0, 11], an external infection parameter Λ ∈ [0, 2] and a co-infection parameter
θ ∈ [0, 1] that we estimate. Details of the model and data are described in [17]. We use uniform
prior and set the threshold ε adaptively to match the 0.01th quantile of realised discrepancies. Figure
2 shows the results. The performances of the proposed methods are similar and also LCB works
well. However, LCB and maxvar tend to underestimate the credible interval while expintvar and
rand_maxvar overestimate it. EI performs again the worst. However, the posterior approximations
produced by the proposed methods are clearly more accurate than those in [5] who used similar
experimental design to illustrate their approach.

We note that the computational overhead caused by our method is negligible compared to the runtime
of many complex simulation models. We have also tested the acquisition rules in other test problems
with e.g. higher dimension than here. Futhermore, we have observed that our acquisition rules work
consistently under informative prior densities of the simulation model and do not necessarily require
bounded parameter domain unlike standard BO strategies. These experiments and further analyses
can be found in our full paper.
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Figure 2: Comparison of the 95% credible interval estimates in the bacterial model. The black dashed
lines show the ground truth by [17] and the vertical lines show the 75% interval of the realisations
over 100 experiments. The x-axis shows the iterations t on the log-scale.
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