Abstract

ML estimation is sensitive to outliers because it treats all data points equally. To avoid this, robust divergences were proposed.

\[D_\beta(p(x); q(x)) = \frac{1}{\beta} \log \frac{p(x)}{q(x)} + \frac{\beta - 1}{\beta} \int q(x) \log q(x) \, dx + \frac{1}{\beta} \int f(x) \log f(x) \, dx \]

- Similarly to ML estimation, minimizing the β-divergence (or the γ-divergence) from \(p^*(x) \) to \(p(x; \theta) \) yields:
 \[\arg \min_\theta D_\beta(p^*(x); p(x; \theta)) \]
 \[= 0 = \frac{1}{\beta} \sum_{i=1}^n \frac{\partial}{\partial \theta} \log p(x_i; \theta) \]

- The first term is the likelihood weighted according to the power of the probability for each data point.
- The probabilities of outliers are usually much smaller than those of inliers, and thus those weights effectively suppress the likelihood of outliers.

Proposed method

Robust variational inference

\[\text{arg min} \int p(x; \theta) \log \frac{p(x; \theta)}{q(x)} \, dx \]

- This first term can be regarded as the expected likelihood, while the second term “regularizes” \(\theta \) to be close to the prior \(\theta^0 \).
- To enhance the robustness to outliers, we update our prior belief by Bayes' theorem and obtain the posterior:
 \[\text{arg min} \int p(x; \theta) \log \frac{p(x; \theta)}{q(x)} \, dx \]

Variational Bayes

\[\text{arg min} \int p(x; \theta) \log \frac{p(x; \theta)}{q(x)} \, dx \]

- This posterior can also be obtained by solving the following optimization problem:
 \[\int q(x) \log q(x) \, dx = \frac{1}{\beta} \log \frac{p(x)}{q(x)} + \frac{\beta - 1}{\beta} \int q(x) \log q(x) \, dx + \frac{1}{\beta} \int f(x) \log f(x) \, dx \]

Experimental results

- We compare the performance of our proposed robust variational inference on UCI datasets with an existing robust variational inference method.
- We found that our method outperforms the existing methods for all datasets.
- The proposed method is capable of handling outliers more effectively.

Main Contributions

- To handle more complex models, we employ the optimization and variational formulation of Bayesian inference. In this formulation, the posterior model is optimized to the data under the Kullback-Leibler (KL) divergence, while it is regularized to be close to the prior.
- We propose replacing the KL divergence for data fitting to a robust divergence, such as β-divergence and γ-divergence.

Introduction

- Samples are generated from some unknown distribution:
 \[\{x_i\}_{i=1}^n \sim p(x) \]
- Main body
 \[p^*(x) = (1 - \varepsilon)p_0(x) + \varepsilon(x) \]

- In outlier-robust inference, we aim at placing an estimated probability distribution close to the main body of the unknown distribution.

Maximum likelihood (ML) estimation

- We estimate an unknown probability distribution \(p^*(x) \) from its independent samples \(x_{i:1}^n \).
- In ML estimation, we minimize the generalization error measured by the KL divergence from \(p^*(x) \) to a parametric model \(p(x; \theta) \).
- We approximate \(p^*(x) \) by the empirical distribution:
 \[\hat{p}(x) = \frac{1}{n} \sum_{i=1}^n \delta(x - x_i) \]
- ML estimator is reduced to:
 \[\arg \min_\theta D_M(p^*(x); p(x; \theta)) \]
- \(\theta \) is regarded as a random variable, following the prior \(p(\theta) \).
- We update our prior belief by Bayes' theorem and obtain the Bayesian posterior:
 \[p(x; \theta) \sim p(x) p(\theta) \]

Bayesian inference

- \(\theta \) is regarded as a random variable, following the prior \(p(\theta) \).
- We update our prior belief by Bayes' theorem and obtain the Bayesian posterior:
 \[p(x; \theta) \sim p(x) p(\theta) \]

Main Results

- The first term is the likelihood weighted according to the power of the probability for each data point.
- The probabilities of outliers are usually much smaller than those of inliers, and thus those weights effectively suppress the likelihood of outliers.

Experiment on UCI datasets

- We compare the performance of our proposed robust variational inference on UCI datasets with an existing robust variational inference method.
- We found that our method outperforms the existing methods for all datasets.
- The proposed method is capable of handling outliers more effectively.

Main References