
GP-GRIEF: Scalable Gaussian Processes with Grid-Structured Eigenfunctions
Trefor W. Evans and Prasanth B. Nair

University of Toronto

Overview

We introduce a kernel approximation strategy that enables Gaussian process train-
ing and inference in Opdnpq time and Opdnq storage for a d-dimensional dataset
of size n. Our GRIEF (GRId-structured Eigen-Function) kernel consists of p
eigenfunctions approximated on a dense Cartesian tensor product grid of induc-
ing points. We show that by exploiting algebraic properties of Kronecker and
Khatri-Rao tensor products, computational complexity of the training procedure
can be independent of the number of inducing points, allowing us to use arbi-
trarily many to achieve a globally accurate kernel approximation. We benchmark
our algorithms on real-world datasets with as many as two-million training points
and up to 1032 inducing points.

Eigenfunction Kernel

We approximate an exact kernel as a finite sum of eigenfunctions using a Nyström
approximation from a set of inducing points [1]. This type of kernel representation is
attractive since
• eigenfunctions give the most compact representation among orthogonal functions;
• our eigenfunctions live in a reproducing kernel Hilbert space, unlike some other

kernel expansions whose bases have a pre-specified (e.g. trigonometric) form; and
• our approximate eigenfunctions converge in the limit of large n [2].

(a) Eigenfunction Kernel (b) FITC, x’s show 12 inducing points (c) Random Fourier Features
Figure: Comparison of kernel approximations using p “ 12 basis functions. Exact kernel shown in black.

We approximate an “exact” kernel k using p eigenfunctions to give the kernel rk:

rkpx, zq“
p
ÿ

i“1

ˆ 1
a

λi
Kx,Uqi

˙ˆ 1
a

λi
Kz,Uqi

˙

“ Kx,UQSTpΛ´1
p SpQTKU,z « kpx, zq, (1)

where x, z P Rd are d-dimensional inputs; U “ tuiumi“1 refers to the set of m inducing
point locations; K_,_ refers to a matrix of exact kernel evaluations between the two
sets in the subscript; Λ,Q P Rmˆm are diagonal and unitary matrices containing
the eigenvalues and eigenvectors of KU,U, respectively; λi and qi denote the ith
largest eigenvalue and corresponding eigenvector of KU,U, respectively; Sp P Rpˆm is
a sparse selection matrix where Sppi, :q contains one value set to unity in the column
corresponding to the index of the ith largest value on the diagonal of Λ; and we use
the shorthand notation Λp “ SpΛSTp P Rpˆp to denote a diagonal matrix containing
the p largest eigenvalues of KU,U, sorted in descending order.
We write the covariance matrix on a training set with inputs X “ txiuni“1 as

ĂKX,X “ KX,UQSTpΛ´1
p SpQTKU,X « KX,X. (2)

The quality of this kernel approximation depends on the quantity and distribution of
inducing points which we discuss next.

Gridded Inducing Points

Quantity and distribution of inducing
points is crucial for an accurate kernel
approximation. We place inducing points
on a Cartesian grid to fill out the input
space while allowing many more inducing
points then training points (m " n). The
grid contains Ďm“ d

?
m«Op10q points along

each dimension. Our covariance matrix
then inherits the Kronecker product (b)
structure KU,U“

Âd
i“1 Kpiq

U,U, enabling ef-
ficient Kronecker matrix algebra to be ex-
ploited [3]. For instance,
KU,U“

Âd
i“1 Kpiq

U,U storage Ñ OpdĎm2
q

KU,U“QΛQT factoring Ñ OpdĎm3
q

Q “
Âd

i“1 Qpiq MVM Ñ OpdĎmd`1
q

Exponential Scaling

In low-dimensions, exploiting grid-
ded inducing point structure can be
greatly advantageous, however, we
can immediately see in the block to
the left that complexity of MVMs
with ĂKX,X increases exponentially in
d! MVMs also require storing a length
Ďmd vector so memory requirements
also scale exponentially. This poor
scaling poses a serious impediment to
the successful application of the pro-
posed approach, or SKI [3], to high-
dimensional datasets. We next dis-
cuss how to overcome this computa-
tional bottleneck.

Linear Scaling

Here, we show how to massively decrease time and storage requirements from
exponential to linear in d by identifying further matrix structure. From ĂKX,X in
eq. (2), we find KX,U admits a row-partitioned Khatri-Rao product (˚) structure

KX,U “
d
˚
i“1

Kpiq
X,U “

¨

˚

˚

˚

˚

˚

˝

Kp1q
X,Up1, :q bKp2q

X,Up1, :q b ¨ ¨ ¨ bKpdq
X,Up1, :q

Kp1q
X,Up2, :q bKp2q

X,Up2, :q b ¨ ¨ ¨ bKpdq
X,Up2, :q...

Kp1q
X,Upn, :qbKp2q

X,Upn, :qb ¨ ¨ ¨ bKpdq
X,Upn, :q

˛

‹

‹

‹

‹

‹

‚

, (3)

Next, we observe that KX,UQ “ ˚d
i“1 Kpiq

X,UQpiq is also a row-partitioned Khatri-
Rao product matrix, and that STp can be written as a column-partitioned Khatri-
Rao product matrix. It can then be shown that a matrix-vector product with
pKX,UQqSTp (a matrix product of row- and column-partitioned Khatri-Rao ma-
trices) can be made in Opdnpq time and using no more than Opnq additional
memory using algorithm mvKRrowcol. We can then train our GP-GRIEF model
in Opdnpq time using a conjugate gradient solver. Also, since Kpiq

X,U are only of
size n ˆ Ďm, our storage requirements have decreased to OpdnĎmq«Opdnq.

(a) Test Data.
fpx, yq“ sinpxq sinpyq

(b) FITCm “ 8.
RMSE “ 0.47

(c) GP-GRIEFm“25, p“4.
RMSE “ 0.34

Figure: Regression comparison of FITC vs GP-GRIEF with a squared-exponential kernel. GP-GRIEF
(with p “ 4) uses only half the basis functions as FITC (with m “ 8), however, achieves much better
generalization on a test set. In fact, GP-GRIEF matches the test error of an exact GP. Crosses denote
the n “ 10 training point positions whose responses are corrupted with N p0, 0.1q noise. Dots denote
inducing point locations within bounds and circles show the direction of those outside bounds.

Algorithm mvKRrowcol
Computes the tensor product RCb where
R P Rnˆm, C P Rmˆp are Khatri-Rao
products of row- and column-partitioned
matrices, respectively. Requires Opdnpq
time if we assume that one of R or C are
dense and the other is sparse with one non-
zero per row. ˝ is the Hadamard product.

Output: f “ RCb P Rn

for j “ 1 to n do
t “ Rp1q

pj, :qCp1q

for i “ 2 to d do
t “ t ˝Rpiq

pj, :qCpiq

end for
f pjq “ tb

end for

Covariance Reconstruction

0 100 200 300 400 500 600 700 800

Number of Eigenfunctions, p

0.0

0.2

0.4

0.6

0.8

1.0

||K̃
−

K
|| 2
/
||K
|| 2

Nystrom, m = p, U ⊂ X

GP-GRIEF, m = 1010

Figure: Covariance matrix reconstruction error of
GP-GRIEF compared to the “Nyström method”
of Williams and Seeger [4] that uses m “ p
inducing points randomly sampled from the
training set. We use n “ 10000 randomly
distributed training points in 10-dimensional
space and a squared-exponential kernel.

UCI Regression Datasets

We present early results on large UCI regression datasets. Observe that:
• Complexity independence on m enables use of 1032 inducing points on Pumadyn.
• GP-GRIEF takes just one hour to train on the two-million point dataset Electric.
• Just p“100 basis functions yield a very high quality model on Electric.
• We demonstrate linear scaling with respect to the number of eigenfunctions, p.
• GP-GRIEF shows test errors comparable to [5]. On Electric it does much better.

GP-GRIEF Yang et al. [5]
Dataset n d p m“Ďmd Time (mins) RMSE RMSE

Pumadyn 8192 32 100 1032 1.6 0.21 ˘ 0.00 0.20 ˘ 0.001000 1032 9.3 0.20 ˘ 0.00

Elevators 16599 18

100 518 0.7 0.097 ˘ 0.001

0.090 ˘ 0.001100 1018 0.8 0.096 ˘ 0.001
1000 1018 6 0.092 ˘ 0.002
5000 1018 30.9 0.091 ˘ 0.001

Protein 45730 9 100 109 0.9 0.63 ˘ 0.01 0.53 ˘ 0.015000 109 34.2 0.58 ˘ 0.01
Electric 2049280 11 100 1011 65.6 0.068 ˘ 0.002 0.120 ˘ 0.120
Table: Mean and standard deviation of test error and average training time (including hyperparmater
estimation) from 10-fold cross validation on UCI regression datasets using a squared-exponential ARD
(SE-ARD) kernel. We compare our results with Yang et al. [5] who use the same train test splits and
approximates an SE-ARD kernel using Fastfood finite basis function expansions. m is the number of
inducing points used and p is the number of eigenfunctions used.

Acknowledgements: Work funded by an NSERC Discovery Grant and the Canada Research Chairs program.

[1] H. Peng and Y. Qi. “EigenGP: Gaussian Process Models with Adaptive Eigenfunctions.” In: International Joint
Conference on Artificial Intelligence. 2015, pp. 3763–3769.

[2] C. T. H. Baker. The numerical treatment of integral equations. Oxford: Clarendon press, 1977.
[3] A. G. Wilson and H. Nickisch. “Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)”. In:

Proceedings of The 32nd International Conference on Machine Learning. 2015, pp. 1775–1784.
[4] C. K. I. Williams and M. Seeger. “Using the Nyström method to speed up kernel machines”. In: Advances in Neural

Information Processing Systems. 2001, pp. 682–688.
[5] Z. Yang, A. J. Smola, L. Song, and A. G. Wilson. “À la Carte – Learning Fast Kernels”. In: Artificial Intelligence and

Statistics. 2015, pp. 1098–1106.

