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Abstract

In this paper, we propose an efficient pseudo-marginal Markov chain Monte Carlo
(MCMC) sampling approach to draw samples from posterior shape distributions
for image segmentation. The computation time of the proposed approach is inde-
pendent from the size of the training set used to learn the shape prior distribution
nonparametrically. Therefore, it scales well for very large data sets. Our approach
is able to characterize the posterior probability density in the space of shapes
through its samples, and to return multiple solutions, potentially from different
modes of a multimodal probability density, which would be encountered, e.g., in
segmenting objects from multiple shape classes. Experimental results demonstrate
the potential of the proposed approach.

1 Introduction

Incorporating prior shape density into the segmentation process has been widely studied in the lit-
erature [20], [29], [25], [2]], [30], [L8]. These methods can usually handle Gaussian-like, unimodal
shape prior densities. Kim et al. [21] and Cremers et al. [8] incorporate nonparametric density esti-
mation based shape priors into the segmentation process using level sets. Therefore, these methods
and their variants can learn “multimodal" shape densities, which can be encountered in problems
involving shape densities containing multiple classes of shapes [14], [6], [31], [28], [9], [23], [L1],
[24]. These methods minimize an energy function and find a solution at a local optimum. This does
not provide any measure of the degree of confidence/uncertainty in that result and any information
about the characteristics of the posterior density.

There are a limited number of Markov chain Monte Carlo (MCMC) based image segmentation
methods in the literature. Most of these methods generate samples from the posterior density by
assuming the prior density is uniform [13], [4]], [5]. The only sampling-based segmentation approach
in the literature that uses a shape prior is the one proposed by Chen et al. [7]. However, the method
cannot handle topological changes in shapes.

Our major contribution in this paper is a pseudo-marginal Markov chain Monte Carlo (MCMC)
sampling-based image segmentation approach that exploits nonparametric shape priors. The pro-
posed approach is able to characterize the posterior density through its samples. Our approach can
learn from very large data sets efficiently by using pseudo-marginal sampling. To the best of our
knowledge, this is the first approach that performs pseudo-marginal MCMC shape sampling-based
image segmentation through an energy functional that uses nonparametric shape priors and level
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sets. Also, unlike other MCMC sampling-based segmentation approaches in the literature, the pro-
posed approach perfectly satisfies the necessary conditions to implement MCMC sampling which is
a crucial step for developing an MCMC sampler.

A precursor to this work was presented in [12]. This paper advances that prior work in two ma-
jor ways: (1) while [12]] approximately satisfies the necessary conditions of MCMC sampling, the
approach presented in this paper perfectly satisfies these conditions; (2) unlike [12]] we use pseudo-
marginal sampling to be able to learn shape densities from very large data sets; the method in [[12]]
becomes inefficient with large training data.

2 Model and problem definition

The image segmentation problem involves estimating an unknown segmenting curve for an object
given an observed image y € Y™ >N where ) is the set of the values that the pixels of y can take.
We are particularly interested in problems in which the prior shape distribution has components

corresponding to different object classes. We denote the class of the objectby s € {1,...,n} where
n > 11is the total number of classes, which is known. For simplicity we assume that s has a uniform
distribution over {1,...,n} sothatp(s) =1/n, s=1,...,n.

We ultimately aim to estimate a binary segmenting curve ¢ € {0,1}*N where 0’s indicate the
background and 1’s indicate the object. The conditional density of y given c is independent from
s and is denoted by py|c(ylc). We construct this density based on the piecewise-constant ver-
sion of the Mumford-Shah functional [26]], [3] which is a very common data fidelity term for
image segmentation. To present the curves, we use level sets, which we define as a mapping
¢ : {0,1}M*N 5 RMN_ Our choice of level sets is to handle topological changes and use gra-
dient flows effectively in our methodology. We denote the level set of ¢ as 2 = ¢(c).

We also have a training set of binary curves that are grouped into classes, C = {C1, . ..,C,}, where
each C; = {¢;i1,...,Cim,  is the collection of m; > 1 segmented curves for class i. Let us also
define the level set representation of the training set as X = {X4,...,X,}, where each X; =
{Zi1s- -, Tim, } With x; ; = &(c; ), the level set representation of ¢; ;. Now we can define the
prior distribution for x given the class s as p(z|s) = - > N (w5254, 021), where N(; 1, ¥)
is a Gaussian density with mean p and covariance matrix . This prior corresponds to a mixture
of kernels with centers x, 1, ..., %s m, With kernel size o [21]. To determine the kernel size o, we
use an ML kernel with leave-one-out [27]. Let us also define ¢ as the pseudo-inverse of ¢ such
that ¢(¢(c)) = c. We use ¢ to rewrite the conditional density of the data in terms of z as p(y|z) =
py|c(y|o(x)). We can also write the joint density of s, z, and y as p(s, z,y) = p(s)p(z[s)p(y|z).

The Bayesian image segmentation problem can be formulated as finding the posterior distribution of
x given y which is p(z|y) o p(y|z)p(z) = p(y|z) Y i_, p(s)p(z|s). However, estimating p(z|y)
can be difficult since the summation over classes makes the distribution hard to infer, e.g., using
Monte Carlo sampling methods. Alternatively, we aim for the joint posterior distribution of s and z
given y, p(s, z|y) x p(s, z,y), whose marginal is still the desired posterior p(z|y).

3 Methodology

3.1 Metropolis-Hastings within Gibbs

We aim to sample from p(s, z|y) using Gibbs sampling by sampling from the conditional densities
p(sly, z) and p(x|y, s) in an alternating fashion [16], [15]. However, since the full conditional
p(x|s,y) is hard to sample from, we update = by using a Metropolis-Hastings (MH) move, which
leads to the well known Metropolis-Hastings within Gibbs (MHwG) algorithm [17]].

Both conditional densities in MHwG involve p(x|s) which needs to be evaluated during MH
updates. This can be too costly when m, is large, which occurs when we have a big train-
ing set. Therefore, towards a more computationally efficient MCMC algorithm that scales with
the training data size, we consider the following unbiased estimator of p(x|s) via subsampling:

Plals) = 7= Y0 N(@; 0,502 1) where {uy,ug, ... um,} C {1,2,...,m} is a set of sub-
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samples generated via sampling without replacement and my < mg,. This approximation of the
prior leads to the approximation of the conditional posterior densities p(s|x,y) o p(s)p(x|s) and
p(z|s,y) « p(z|s)p(y|z). Using this approximation does not generally guarantee that the Markov
Chain has an equilibrium distribution that is exactly p(z, s|y). To achieve a correct MH algorithm
which uses the approximation p(z|s) and still targets p(z, s|y), we adopt the pseudo-marginal MH
algorithm of [1]; the details are described in the following section.

3.2 Pseudo-marginal MHwG

Assume that we have a non-negative random variable z such that given x and s, its conditional
density given s and z, g5 (%), satisfies fooo 9s.5(2)zdz = p(x|s). We choose z as an approximation
to p(z|s), in particular z = p(x|s) where p(x|s) is defined in Section[3.1] and its probability density
gs,2 () corresponds to the generation process of this approximation. (It will become clear that in fact
we do not have to calculate g, ,(z) at all but we should be able to sample from it.) Note that z is a
random variable since we generate {uy, . . ., 4} randomly when computing p(x|s). We can define
the extended posterior density with the new variable z added as p(z, s, z|y) x p(s)zgs..(2)p(y|z).
When we integrate z out, we see that samples for s and x from p(z, s, z|y) will admit the desired
posterior p(s, z|y): p(s)p(y|x) [ zgs.(2)dz = p(s)p(z|s)p(y|z). Now, the problem of generating
samples from p(s, z|y) can be replaced with the problem of generating samples from p(z, s, z|y).

We propose a pseudo-marginal MHwG sampling procedure to generate samples from p(z, s, z|y).
Note the important remark that this algorithm also targets p(x, s|y), hence p(x|y) exactly. There are
two major steps of the proposed approach which we explain in detail in the following: (1) condition
the posterior on x and update s and z, (2) update x and 2z by conditioning the posterior on s.

Update step for the class s and z: The distribution from which we sample s and z in Metropolis-
Hastings is p(s, z|y, ). We can write this distribution as p(s, z|y, x) = p(s, z|z) x p(s)zgs.(z).
Since we regard the proposal mechanism as a joint update of s and z, the proposal generates (s, 2’
from the density ¢(s’|s)gs . (2). Note that (s’, z’) denotes the candidate samples generated from the
proposal distribution. We take g(s|s) as a uniform distribution /{1, n} and 2’ = p(z|s’) [1]]. Once
s" and 2’ are sampled, they are either accepted with probability

)0 (Dalsl)g ()] [ e alsls)
{1’ 2(5) 2002 (2)a('8) g = () } {1’ p(5)24(5']5) }

or the current values of s and z are kept. The probabilities in the MH ratio in (1) can be computed
exactly which guarantees satisfying the necessary conditions to implement MCMC sampling.

1)

Update step for the level set x and z: The next step is to sample x and z from the conditional
density p(z, z|y, s). To achieve this, we perform Metropolis-Hastings sampling as we use for sam-
pling s’ and z’. The conditional density p(x, z|y, s) can be written as p(z, z|s, y) X 2gs 4(2)p(y|x).
Also, for joint sampling of candidates (z', z’) we can write the proposal density as ¢, ; (2, 2'|y) =
s, (@'2,y)gs o (2") where j is sampled uniformly from {1, m}, and 2’ = p(a'|s) is generated
using subsampling. Then, the Metropolis-Hastings ratio can be computed as follows:

. 2 ge 2 (2 )W) qs 5 (]2, 4)gs 2 (2) } : { 2'p(yla’)qs ;(z]2', y) }
1, - 1, 2
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Design of the proposal distribution: The crucial part in (2) is designing the proposal distribution
to generate a candidate curve x’ from x. Let us define an energy function whose gradient drives
the curve to the desired location using the data and the training images in a particular class s as
Ei(z) :=logp(z|s) + logp(y|x, s). When the training data set is too large, calculating log p(z|s)
may be too expensive as discussed earlier. An unbiased estimator of E,(z) would be obtained
as Es j(z) := logN(z;xs ;,0%I) + logp(y|z,s) where j ~ U(1,...,ms). The proposal dis-
tribution after sampling the j* training image in class s is then constructed as gs ;(2’|z,y) =

N (x’ [T — ?ES_J- (x), Z). Here, the shift term ?ES_J- (z) is an approximation] to the gradient

VE, ;(x) w.rt. x and is given by ?ES_J- (2) = (@ —zs;) + [(y — pin)®* — (Y — ftour)®?] where
(-)®* is the element-wise power operation.

*Note that the term (y — ftin)©% — (i — pour) ©? is a discrete approximation w.r.t. the level set representation
2 (3], so that the whole expression is an approximation to VEs ;(x).



In the design of ¢, ;(2'|x, y), the most important part is selecting a covariance matrix, ¥, that gen-
erates smooth perturbations since smoother curves are more likely [21]], [13]. In the proposed ap-
proach, we compute a positive semi-definite covariance matrix 3 such that it generates smooth
random perturbations. Given an M x N image, we first generate an M/ N x M N matrix Z by draw-
ing i.i.d. samples from a unit Gaussian distribution. Then, we construct another M N x M N matrix
F where each column of F' is a smoothed version of each row in Z. By assuming F' is constructed

by multiplying Z by a matrix A, we can find the matrix A as_ A = Z7'F since Z is generally
invertible. Given A a covariance matrix 3. can be computed by S = AAT . However, generally S is
not positive semi-definite since Ais not generally a full rank matrix. Therefore, we find the closest
positive semi-definite matrix to ) using the approach in which we take it as X.

4 Experimental results

We compare running time of the proposed pseudo-marginal sampling approach and conventional
sampling approach which uses all training examples to estimate the prior shape density. We perform
experiments on the MNIST data set which contains 60,000 training examples. We construct
training sets with various sizes from 1K to 50K by randomly selecting equal number of samples
from each digit class. We generate 1000 samples using both the pseudo-marginal sampling and con-
ventional sampling on a test image by using training sets with different sizes. The plot in Figure
[[ shows average running time as a function of training set size for both pseudo-marginal sampling
and conventional MCMC sampling. The average single sample generation time of the proposed
approach does not change as the training set size increases since we choose my = 10 in all experi-
ments. We also measure the segmentation accuracy of all samples with the ground truth using Dice
score [10]. Average Dice score result for pseudo-marginal sampling is 0.7718 whereas it is 0.7777
for the conventional sampling. The very slight decrease in Dice results of pseudo-marginal sampling
can be acceptable in many applications when the huge gain in running time is considered.
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We also run the proposed approach on the test image in Figure[2(a) and generate 1000 samples. The
algorithm generates samples from digit classes 4, 7, and 9 as shown in Figure[2(c)} The optimization-
based approach of Kim et al. [21] finds a single segmentation solution shown in Figure 2(b)} This
experiment shows that our algorithm can produce samples from different modes.

5 Conclusion

We propose a pseudo-marginal Markov chain Monte Carlo (MCMC) sampling-based image segmen-
tation approach that exploits nonparametric shape priors. The proposed approach generates samples
from the posterior distribution p(z|y) to avoid shortcomings of the optimization-based approaches
which include getting stuck at local optima and being unable to characterize the posterior density.
The proposed MCMC sampling approach deals with all these problem while being computationally
efficient, unlike the conventional MCMC approaches, by using pseudo-marginal sampling princi-
ples. Moreover, our pseudo-marginal shape sampler perfectly satisfies the necessary conditions to
implement MCMC sampling which is crucial for ensuring the generated samples come from the
desired distribution. Existing methods in the literature only approximately satisfy these conditions.

*Note that Dice score takes values in [0, 1] where 1 indicates the perfect match with the ground truth.
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