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1 Introduction

A generative model is, of necessity, a vast simplification of the deeply complex real-world phenomena
that govern any observed data set. It is only via this simplification that we can arrive at a tractable data
analysis and discover meaningful and actionable patterns in data. In this sense, typically any model of
a real-world data set is misspecified, and misspecification is unavoidable. But while misspecification
in the form of simplification is powerful, it can also be potentially dangerous. In particular, certain
kinds of misspecification can lead to fundamentally inaccurate or misleading inferences. For instance,
recent work by Miller and Harrison (2013, 2014) serves as a cautionary tale about mixture modeling.
In particular, mixture models are often matched with a nonparametric Bayesian prior by practitioners
in order to discover the number of clusters in a set of data. Miller and Harrison (2013, 2014)
demonstrate that such models are “severely” inconsistent for the number of clusters; that is, the
probability of the correct number of clusters being recovered decreases to zero as the amount of data
increases. An implication is that finite mixture models would be a more appropriate modeling choice.
But empirical work by Miller and Dunson (2015) suggests otherwise. We here aim to demonstrate
theoretically that even finite mixture models with an unknown number of clusters generally exhibit
severe inconsistency, just as the nonparametric Bayesian models do. We discuss the implications for
practical modeling and inference in mixture models.

Mixture models are widely used across the sciences and engineering to discover latent groups in a
data set. Typically the number of groups, or clusters, is unknown in advance, and one of the principal
inferential goals is estimating and interpreting the number of clusters. For instance, practitioners
might wish to find the number of latent genetic populations (Pritchard et al., 2000; Lorenzen et al.,
2006; Huelsenbeck and Andolfatto, 2007), gene tissue profiles (Yeung et al., 2001; Medvedovic
and Sivaganesan, 2002), cell types (Chan et al., 2008; Prabhakaran et al., 2016), haplotypes (Xing
et al., 2006), switching Markov regimes in US dollar exchange rate data (Otranto and Gallo, 2002),
gamma-ray burst types (Mukherjee et al., 1998), or segmentation regions in an image (e.g., tissue
types in an MRI scan (Banfield and Raftery, 1993)).

Suppose we take a Bayesian approach and compute a posterior distribution over the number of
clusters. A natural check on our analysis is to establish that—when the true, generating number of
clusters is known—our posterior increasingly concentrates near the truth as the number of data points
becomes arbitrarily large. That is, we wish to check for a form of consistency. A nonparametric
Bayesian prior for mixture models implicitly gives a prior with support on the natural numbers for
any number of data points and is often used for learning the number of components in a mixture
model. But Miller and Harrison (2013, 2014) demonstrate that the posterior under such a prior
concentrates strictly away from the true, generating number of clusters when that number is finite.
In fact, the estimate of the number of clusters diverges to infinity as the amount of data grows. A
recommended alternative (Green and Richardson, 2001; Miller and Harrison, 2013, 2014, 2016) is to
instead consider a prior on the number of clusters that does not vary with the size of the data but still
maintains support on all possible positive integer numbers of clusters. We call this the finite mixture
model in what follows to emphasize that, unlike in the nonparametric Bayesian model, the expected
number of clusters in the generative model is fixed and finite across data set sizes. Nobile (1994)
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has shown that the resulting posterior in this case does concentrate at the true, generating number of
clusters. But crucially this result depends on the assumption that the cluster likelihoods, roughly the
shapes of the clusters, are perfectly specified.

In practice, though, we can expect that the cluster likelihoods are at least somewhat imperfectly
specified since they are necessarily simplifications of real-world phenomena. For instance, while
Gaussian mixture models are ubiquitous, data are rarely perfectly Gaussian. Miller and Dunson
(2015) provide empirical evidence of undesirable posterior behavior in a finite mixture model with
misspecified likelihood. We conjecture that even in the finite mixture model, the posterior number
of clusters typically concentrates strictly away from the generating number of clusters when that
number is finite. We further conjecture that, in fact, with probability 1, the estimate of the number
of clusters diverges to infinity as the amount of data grows, just as in the nonparametric case. After
reviewing consistency and inconsistency, we posit results for mixture model consistency and rates of
convergence (or divergence) in Section 3. We give empirical evidence for the severe inconsistency
problem in finite mixture models in Section 4. We conclude in Section 5 with a discussion of the
implications of these results for the practitioner who wishes to discover the number of clusters in a
mixture model; we also discuss the role of consistency in practical data analysis.

2 Bayesian mixture models

We consider a Bayesian model consisting of (1) a prior distribution Π0 on a parameter space Ω and
(2) conditionally i.i.d. data governed by a likelihood distribution Pθ(·) on an observation space X
and defined for every parameter θ ∈ Ω. All spaces are endowed with appropriate σ-algebras, and we
assume there exists a measure ν on X such that ∀θ ∈ Ω, Pθ � ν; therefore Pθ has density pθ with
respect to ν. The joint distribution of the parameter Θ ∈ Ω and observations X1, . . . , XN ∈ X is
defined by

Θ ∼ Π0 X1, . . . , XN |Θ
i.i.d.∼ PΘ. (1)

The posterior distribution Π on Ω describes the practitioner’s state of knowledge after observing N
observations X1, . . . , XN and is defined by

∀ measurable A ⊆ Ω, Π(A |X1, . . . , XN ) =

∫
A

∏N
n=1 pθ(Xn)dΠ0(θ)∫

Ω

∏N
n=1 pθ(Xn)dΠ0(θ)

. (2)

We focus on a particular Bayesian model choice: a mixture model with an unknown number of
components. In this case, the likelihood Pθ is a weighted sum of component distributions Fξ for
ξ ∈ Ξ. The full parameter space here is the union across possible cluster cardinalities k ∈ N of:
the product space of {k}, the k-dimensional probability simplex, and k copies of the component
parameter space Ξ; i.e., Ω =

⋃∞
k=1{k} ×∆k−1 ×Ξk. Thus, each parameter θ ∈ Ω can be expressed

as θ = (k, π1, . . . , πk, ξ1, . . . , ξk) for some k ∈ N. We then give Pθ the form

∀ measurable A ⊆ X , Pθ(A) =

k∑
j=1

πjFξj (A).

Since we have assumed ν dominates {Pθ : θ ∈ Ω}, the above equality implies ν also dominates
{Fξ : ξ ∈ Ξ}, so we have that there exist densities fξ such that pθ =

∑k
j=1 πjfξj .

3 Posterior inconsistency

A desirable property of the posterior distribution Π is that it becomes arbitrarily more “accurate” as
we gather more data. In particular, suppose our model is well-specified in that the data X1, . . . , XN

are truly generated from Pθ for some θ ∈ Ω. Then we might expect the posterior to concentrate
on neighborhoods of θ. That is, for some large class of measurable subsets A ⊆ Ω, the posterior
Π(A |X1, . . . , XN ) should converge to 1(θ ∈ A) in some sense as N →∞. Properties of this form
are known collectively as posterior consistency. There are several popular formulations of posterior
consistency (e.g., Doob (1949); LeCam (1953); Freedman (1963); Schwartz (1965)), and we provide
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an overview in the appendix. For an in-depth review, see Ghosh and Ramamoorthi (2003, Ch. 4) and
Ghosal and van der Vaart (2017, Ch. 6).

The posterior consistency theorems above assume the data are truly generated by Pθ for some
θ ∈ Ω. In our setting, we are specifically interested in posterior (in)consistency for misspecified
models. Posterior consistency for models under likelihood misspecification has been investigated
by Berk (1966); Kleijn and van der Vaart (2006); De Blasi and Walker (2013); Ramamoorthi et al.
(2015), where the conditions for consistency are much stronger than in the case when the model is
well-specified.

Posterior (in)consistency in mixture models. Posterior consistency for density estimation in a wide
class of mixture models is well-established (Ghosal et al., 1999; Lijoi et al., 2004). But posterior
consistency for the number of components is not as thoroughly characterized. There are several results
establishing consistency for well-specified finite mixture models. Nobile (1994) demonstrates that
finite mixtures exhibit posterior consistency (see Appendix A.3) assuming the model is well-specified
and the class of densities {pθ : θ ∈ Ω} is identifiable (up to duplicate components and component
reordering). Ishwaran et al. (2001) shows that in a well-specified setting, the posterior does not
asymptotically underestimate the number of components when assuming a stronger identifiability
condition (see Definition A.3 and theorem A.4), but this result does not cover its behavior at numbers
of components larger than the true number. Rousseau and Mengersen (2011) shows that in a mixture
model with well-specified densities but an excess of components, the posterior will concentrate
properly by emptying the extra components.

Miller and Harrison (2013, 2014) considers data generated by a finite mixture but modeled with
a nonparametric mixture. The authors show that the posterior on the number of components is
inconsistent and instead suggest using a finite mixture model for inference, given the posterior
consistency results (under correct specification of the likelihood) cited above. Additionally, the
authors note that despite achieving consistency, the practitioner should be wary of misspecification of
the mixture likelihood. However, in practice, likelihoods are almost always misspecified. Thus, it is
important to understand when misspecification is problematic and exactly what problems manifest
in practice. We focus on the case where the likelihood model does not contain the generating data
distribution and the resulting posterior inconsistency for the number of mixture components. For
example, suppose the data are generated from a mixture of Laplace distributions, while the model is
chosen to be a Gaussian family; in Section 4, we examine this example empirically. A proof sketch
for the following result may be found in Appendix A.4.
Conjecture 3.1. Suppose the data are generated by a density p that is not in {pθ : θ ∈ Ω}. Then the
posterior on the number of components is severely inconsistent, i.e.

∀k ∈ N, Π(k |X1, . . . , XN )
Pθ a.s.→ 0, N →∞. (3)

Since mixture models are typically misspecified in practice, this result implies that the posterior for
the number of components is typically inconsistent. However, since inconsistency is an asymptotic
property, it is useful to quantify when, for a finite sample, a posterior can still give “useful” inferences.
For instance, if the data generating density p is close to some member of the model class pθ, inferences
made given data from p and data from pθ should be similar until a large enough sample size has
been obtained to differentiate them. We quantify this difference precisely by viewing the posterior
Π (· |X1, . . . , XN ) as a random element in the space of probability measures on Ω, and comparing
the distribution over the posterior given data X1, . . . , XN ∼ p and data X1, . . . , XN ∼ pθ. Although
specified for the general setting, this result applies to the posterior on the number of components in a
mixture model. A proof sketch for the following result may be found in Appendix A.5.
Conjecture 3.2. Suppose p = (1 − ε)pθ + εq for some density q, ε ∈ [0, 1], and θ ∈ Ω. Then
if µ is the distribution over the posterior given data (Xn)Nn=1

i.i.d.∼ p and µθ is the same for data
(Xn)Nn=1

i.i.d∼ pθ,

dTV (µ, µθ) ≤ 1− (1− ε)N . (4)

4 Simulations

We examine two simple examples of model misspecification and posterior inconsistency in the
number of components. Our experiments and empirical results are very similar to Figure 2 of Miller
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(a) Gaussian data, 1 component (b) Laplace data, 1 component

(c) Gaussian data, 2 components (d) Laplace data, 2 components

Figure 1: Posterior probability of the number of components k for the Gaussian mixture model, fit to
univariate data generated from a Gaussian mixture model, and a Laplace mixture model.

and Dunson (2015), who study the posterior of a skewed Gaussian. Specifically, we study data
generated from a 1-component and 2-component Gaussian and Laplace mixture models, where the
data size varies from n = 50, 200, 1000, 2000, 10000. Each subset of the data is fit to a univariate
Gaussian mixture model, with a geometric(0.1) prior on the number of components. Inference for the
model is performed using a split-merge Gibbs sampler (Miller and Harrison, 2016)1. We ran a total
of 30000 iterations per dataset, discarding 5000 burn-in samples. The results of the simulations are
in Figure 1. The top row shows the results of the 1-component Gaussian and Laplace models. The
posterior on the number of components concentrates around 1 in the case of Gaussian-generated data
as the sample size increases (left), where as the posterior on the number of components diverges for
the Laplace data (right). The bottom row shows a similar behavior in the 2-component case, where
the posterior concentrates around the correct value in the Gaussian case but not the Laplace case.

5 Discussion and future directions

We have posited that the posterior for the number of components is inconsistent for mixture models
with a misspecified component family. Misspecification is inevitable in practice; in some cases, it can
severely affect the interpretability of results, but in other cases, misspecified models can be useful
(Grünwald, 2006). Thus, it is important to understand under what conditions we can expect to make
reasonable inferences—and how we can mitigate the effect of model misspecification. In our work,
we have outlined a few promising first steps towards understanding misspecification and its effect
on the number of components in the model. A number of authors have recently proposed robust
Bayesian inference methods to mitigate likelihood misspecification (Grünwald and van Ommen,
2014; Miller and Dunson, 2015; Wang et al., 2017), for the setting when the empirical distribution of
the observed data is close in Kullback-Leibler divergence to the empirical distribution of the data
sampled from the model. It remains to better understand connections between our results and these
methods. For instance, it would be interesting to investigate connections between our Conjecture 3.2
and the asymptotic results of Miller and Dunson (2015) and whether our result might provide insights
into setting the parameter in the coarsened posterior.

1Code available at https://github.com/jwmi/BayesianMixtures.jl
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A Posterior consistency details

A.1 Doob’s consistency theorem

There are several popular formulations of posterior consistency. The earliest method, pioneered by
Doob (1949), is a Bayesian formulation in which consistency is guaranteed to hold at almost every
θ ∈ Ω under the prior Π0 (Theorem A.1).
Theorem A.1 (Doob (1949)). Suppose the mapping θ 7→ Pθ is one-to-one. Then under mild technical
conditions (see Schwartz (1965, Theorem 3.2)),

∀ measurable A ⊆ Ω, Π(A |X1, . . . , XN )
PΘ a.s.→ 1 (Θ ∈ A) Π0 a.e. (A.1)

This result is remarkably elegant: assuming the model is identifiable, it asserts that Bayesian posteriors
are almost surely consistent on all neighborhoods of Θ for a very large class of models. Its proof
based on the theory of martingales is likewise elegant. However, the parameter θ governing the
generation of data must truly be generated via Θ ∼ Π0, since the above result only holds outside a
set of Π0-measure 0. Unfortunately, this set of measure 0 can be quite large (in a practical sense) in
many applications, and if we take a frequentist perspective in which θ is simply some unknown, fixed
value, the above result cannot be applied.

A.2 Conditions for Schwartz’s consistency theorem and extensions

If we take a frequentist perspective in which θ is simply some unknown, fixed value, then Theorem A.1
is not applicable. Therefore, Schwartz (1965) developed a second, frequentist formulation of posterior
consistency in which the data are truly generated by Pθ for some θ ∈ Ω, and the goal is to show that
the posterior concentrates on neighborhoods V of θ. Roughly, V has to be large enough that it is
supported by the prior (Definition A.1) and that there exists a test that distinguishes data X1, . . . , XN

generated by θ from that generated by any parameter in V c (Definition A.2). If these two properties
hold, then the posterior is consistent on V (a.s. Pθ) (Theorem A.2). Note that in contrast to Doob’s
result (Theorem A.1), Theorem A.2 makes no assumption that the parameter is generated by the prior
Π0; however, this comes at the cost of verifying the KL-neighborhood and uniformly exponentially
consistent (UEC) test conditions given in Appendix A.
Definition A.1. A measurable subset V ⊂ Ω is said to be a KL-neighborhood of θ if for every ε > 0
there exists a subset W ⊆ V such that

Π0(W ) > 0 and sup
ζ∈W

Eθ
[
log

pθ(X)

pζ(X)

]
< ε. (A.2)

Definition A.2. A uniformly exponentially consistent (UEC) test for a measurable subset V ⊆ Ω at
θ is a sequence of measurable subsets An ⊆ Xn and r > 0 such that

PNθ (AN ) ≥ 1− e−Nr and sup
ζ∈V c

PNζ (AN ) ≤ e−Nr, (A.3)

We now state Schwartz’s consistency theorem.
Theorem A.2 (Schwartz (1965, Theorem 6.1)). Suppose the data are generated from Pθ, and V ⊂ Ω.
Then if measurable V ⊂ Ω is a KL-neighborhood of θ and there exists a UEC test for V at θ,

Π(V c |X1, . . . , XN )→ 0, Pθ a.s. (A.4)

Many extensions to Schwartz’s consistency theorem have been developed and are important for
establishing posterior consistency in nonparametric Bayesian models. We refer to Ghosh and
Ramamoorthi (2003, Ch. 4) and Ghosal and van der Vaart (2017, Ch. 6) for details and additional
references.

A.3 Posterior consistency in mixture models

Theorem A.3 (Nobile (1994, Theorem 3.2)). If

Π0 ({θ ∈ Ω : ∃i 6= j with either ξi = ξj or πi = πj}) = 0, (A.5)
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and the class of densities {pθ : θ ∈ Ω} is identifiable up to component reordering and duplicate
components, then

∀k ∈ N, Π(k |X1, . . . , XN )
PΘ a.s.→ 1(k = K) Π0 a.e. (A.6)

In the frequentist posterior consistency setting, Ishwaran et al. (2001, proof of Theorem 1) establishes
that for an F-identifiable class of densities {pθ : θ ∈ Ω}, if the true density pθ is in the KL-support
of the prior, the posterior weights the true k exponentially more than any k′ < k. F -identifiability is
a stronger condition than identifiability, and is related to the existence of UEC tests (Barron, 1989):
Definition A.3. A class of densities {pθ : θ ∈ Ω} is F-identifiable if there exists a countable
sequence of sets (An)Nn=1 for which θ 6= θ′ means pθ(An) 6= pθ′(An) for some n ∈ N.
Definition A.4. A density pθ? is in the KL-support of the prior Π0 if for all ε > 0,
Π0 ({pθ : θ ∈ Ω, dKL(pθ? , pθ) < ε) > 0.
Theorem A.4 (Ishwaran et al. (2001, Proof of Theorem 1)). Suppose the data are generated by a k-
component mixture pθ, where pθ is in the KL-support of the prior and {pθ : θ ∈ Ω} is F -identifiable.
Then there exists an ε > 0 such that for any k′ < k

Π(k |X1, . . . , XN )

Π(k′ |X1, . . . , XN )
≥ eNε as N →∞ Pθ a.s. (A.7)

A.4 Proof sketch of Conjecture 3.1

Proof Sketch. Recent results on density consistency under model misspecification (Ramamoorthi
et al., 2015) show that the posterior will concentrate on a density pθ? in the model family that is “as
close as possible” to the true density p in some sense. Since p /∈ {pθ : θ ∈ Ω}, the closest density pθ?
to p will have an infinite number of components, making the posterior on the number of components
approach 0 for any finite number.

A.5 Proof sketch of Conjecture 3.2

Proof Sketch. Let M be a σ-algebra of sets of probability measures on Ω, I = {0, 1}N , z =

[1, . . . , 1], and g(I) =
∑N
n=1 In be the number of nonzero entries in I ∈ I. Further, let fN map a

dataset (Xn)Nn=1 to the corresponding posterior on Ω given that dataset. Then

dTV (. . . ) =
1

2
sup
A∈M

∣∣∣∣∣
∫
x∈f−1

N (A)

N∏
n=1

p(xn)−
N∏
n=1

pθ(xn)dx

∣∣∣∣∣ (A.8)

=
1

2
sup
A∈M

∣∣∣∣∣
∫
x∈f−1

N (A)

N∏
n=1

((1− ε)pθ(xn) + εq(xn))−
N∏
n=1

pθ(xn)dx

∣∣∣∣∣ (A.9)

=
1

2
sup
A∈M

∣∣∣∣∣
∫
x∈f−1

N (A)

∑
I∈I

N∏
n=1

((1− ε)pθ(xn))In(εq(xn))1−In −
N∏
n=1

pθ(xn)dx

∣∣∣∣∣ .
(A.10)

Using the triangle inequality to extract the right hand term with the I = [1, . . . , 1] term,

dTV (. . . ) ≤ 1

2
sup
A∈M

(1− (1− ε)N )

∫
x∈f−1

N (A)

N∏
n=1

pθ(xn)dx+ (A.11)

∑
I∈I\{z}

εN−g(I)(1− ε)g(I)
∫
x∈f−1

N (A)

N∏
n=1

pθ(xn)Inq(xn)1−Indx. (A.12)

Noting that all integrands above are densities, the integrals are probabilities and so lie in [0, 1].
Therefore, we can bound these constants by 1 and drop the supremum,

dTV (. . . ) ≤ 1

2

(
(1− (1− ε)N ) +

N∑
n=1

(
N

n

)
εn(1− ε)N−n

)
. (A.13)
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Using the binomial theorem,

dTV (. . . ) ≤ 1− (1− ε)N . (A.14)
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