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q(n) factors, the second equality follows from the chain rule and splitting the log, and the last line
follows from using p(n) =
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3 Qualitative perspectives

We can make several observations about the ELBO expression given in (17). First, the two terms 1
and 2 are in tension with each other because to get a good average reconstruction score for 1 , we
typically need each encoding z

n

to be specific to its corresponding observation x

n

and hence q(n | z)
should have low entropy. Term 2 acts as a regularizer, in that it encourages the encodings q(z |x

n

)

to overlap for distinct observations n, but this effect is likely to be weak relative to the reconstruction
term 1 . Interestingly, 2 is bounded above and below, because

0  logN � E
q(z)H[q(n | z)]  logN. (18)

Empirically, we have found that reconstructions are very precise and, correspondingly, q(z |n) is
very concentrated relative to q(z), resulting in 2 is close to its maximum value of logN .

Second, while q(z) appears in all terms, p(z) only appears in 3 . Thus when considering choosing
priors p(z) to optimize the ELBO, only this term is affected. Observe that we could set 3 to zero
without sacrificing model power by simply defining the prior to be q(z). This choice would not be
amenable to scalable computation because it is difficult to evaluate 2 in isolation: to normalize
q(n | z) at each evaluation requires accessing all N observations (and the normalization also precludes
us from making unbiased Monte Carlo estimates). Setting 3 to zero may also be undesirable due
to the potential for overfitting or the inability to use the prior to sculpt the latent representation [4].
Nevertheless, because 3 can in principle be set to zero, whenever it is large it indicates a very strong
and potentially unwanted regularization effect from the prior.

4 Basic empirical results

To get a sense for the new terms in (17), we fit a basic variational autoencoder to a binarized MNIST
dataset. The encoder and decoder each had two hidden layers with 500 units each and used softplus
nonlinearities, and we fit them using the Adam optimizer [5]. For more details, see the code.

After optimization, we estimated the marginal KL term 3 via Monte Carlo:
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