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Abstract

Variational inference using the reparameterization trick has enabled large-scale ap-
proximate Bayesian inference in complex probabilistic models, leveraging stochas-
tic optimization to sidestep intractable expectations. The reparameterization trick is
applicable when we can simulate a random variable by applying a (differentiable)
deterministic function on an auxiliary random variable whose distribution is fixed.
For many distributions of interest (such as the gamma or Dirichlet), simulation
of random variables relies on rejection sampling. The discontinuity introduced
by the accept–reject step means that standard reparameterization tricks are not
applicable. We propose a new method that lets us leverage reparameterization
gradients even when variables are outputs of a rejection sampling algorithm. Our
approach enables reparameterization on a larger class of variational distributions.
In several studies of real and synthetic data, we show that the variance of the
estimator of the gradient is significantly lower than other state-of-the-art methods.
This leads to faster convergence of stochastic optimization variational inference.

Let p(x, z) be a probabilistic model, i.e., a joint probability distribution of data x and latent
(unobserved) variables z. In Bayesian inference, we are interested in the posterior distribution
p(z|x) = p(x,z)

p(x) . For most models, the posterior distribution is analytically intractable and we have
to use an approximation, such as Monte Carlo methods or variational inference. In this paper, we
focus on variational inference.

In variational inference, we approximate the posterior with a variational family of distributions
q(z ; θ), parameterized by θ. Typically, we choose the variational parameters θ that minimize the
Kullback-Leibler (KL) divergence between q(z ; θ) and p(z|x). This minimization is equivalent to
maximizing the evidence lower bound (ELBO) [Jordan et al., 1999],

L(θ) = Eq(z ;θ) [f(z)] +H[q(z ; θ)],

f(z) := log p(x, z), H[q(z ; θ)] := Eq(z ;θ)[− log q(z ; θ)].
(1)

When the model and variational family satisfy conjugacy requirements, we can use coordinate ascent
to find a local optimum of the ELBO [Ghahramani and Beal, 2001, Blei et al., 2016]. If the conjugacy
requirements are not satisfied, a common approach is to build a Monte Carlo estimator of the gradient
of the ELBO [Paisley et al., 2012, Ranganath et al., 2014, Salimans and Knowles, 2013]. Empirically,
the reparameterization trick has been shown to be beneficial over direct Monte Carlo estimation of the
gradient using the score fuction estimator [Rezende et al., 2014, Kingma and Welling, 2014, Titsias
and Lázaro-Gredilla, 2014, Fan et al., 2015]. However, it is not generally applicable, it requires that:
(i) the latent variables z are continuous; and (ii) we can simulate from q(z ; θ) as follows,

z = h(ε, θ), with ε ∼ s(ε). (2)
Here, s(ε) is a distribution that does not depend on the variational parameters; it is typically a standard
normal or a standard uniform. Further, h(ε, θ) is differentiable with respect to θ. Using (2), we can
move the derivative inside the expectation and rewrite the gradient of the ELBO as

∇θL(θ) = Es(ε) [∇zf(h(ε, θ))∇θh(ε, θ)] +∇θH[q(z ; θ)].
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Algorithm 1 Reparameterized Rejection Sampling

Input: target q(z ; θ), proposal r(z ; θ), and constant Mθ, with q(z ; θ) ≤Mθr(z ; θ)
Output: ε such that h(ε, θ) ∼ q(z ; θ)

1: i← 0
2: repeat
3: i← i+ 1
4: Propose εi ∼ s(ε)
5: Simulate ui ∼ U [0, 1]
6: until ui < q(h(εi,θ) ;θ)

Mθr(h(εi,θ) ;θ)

7: return εi
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Figure 1: Example of a reparameterized rejection sampler for q(z ; θ) = Gamma(θ, 1), shown here
with θ = 2. We use the rejection sampling algorithm of Marsaglia and Tsang [2000], which is
based on a nonlinear transformation h(ε, θ) of a standard normal ε ∼ N (0, 1), and has acceptance
probability of 0.98 for θ = 2. The marginal density of the accepted value of ε (integrating out the
acceptance variables, u1:i) is given by π(ε ; θ). We compute unbiased estimates of the gradient of the
ELBO (6) via Monte Carlo, using Algorithm 1 to rejection sample ε ∼ π(ε ; θ). By reparameterizing in
terms of ε, we obtain a low-variance estimator of the gradient for challenging variational distributions.

We next show that taking a novel view of the rejection sampler lets us perform exact reparameterization
for variational families where it was previously not possible.

1 Reparameterizing the Rejection Sampler

The basic idea behind reparameterization is to rewrite simulation from a complex distribution as
a deterministic mapping of its parameters and a set of simpler random variables. We can view
the rejection sampler as a (complicated) deterministic mapping of a (random) number of simple
random variables such as uniforms and normals. This makes it tempting to take the standard
reparameterization approach when we consider random variables generated by rejection samplers.
However, this mapping is in general not continuous, and thus moving the derivative inside the
expectation and using direct automatic differentiation would not give the correct answer.

Our insight is that we can overcome this problem by instead considering only the marginal over the
accepted sample, analytically integrating out the accept–reject variable. Thus, the mapping comes
from the proposal step. This is continuous under mild assumptions, enabling us to greatly extend the
class of variational families amenable to reparameterization.

We first review rejection sampling and present the reparameterized rejection sampler. Next we show
how to use it to calculate low-variance gradients of the ELBO. Finally, we present the complete
stochastic optimzation for variational inference, rejection sampling variational inference (RSVI).

1.1 Reparameterized Rejection Sampling

Rejection sampling is a powerful way of simulating random variables from complex distributions
whose inverse cumulative distribution functions are not available or are too expensive to evaluate
[Devroye, 1986, Robert and Casella, 2004]. We consider an alternative view of rejection sampling
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in which we explicitly make use of the reparameterization trick. This view of the rejection sampler
enables our variational inference algorithm in Section 1.2.

To generate samples from a distribution q(z ; θ) using rejection sampling, we first sample from a
proposal distribution r(z ; θ) such that q(z ; θ) ≤ Mθr(z ; θ) for some Mθ < ∞. In our version
of the rejection sampler, we assume that the proposal distribution is reparameterizable, i.e., that
generating z ∼ r(z ; θ) is equivalent to generating ε ∼ s(ε) (where s(ε) does not depend on θ)
and then setting z = h(ε, θ) for a differentiable function h(ε, θ). We then accept the sample with
probability min

{
1, q(h(ε,θ) ;θ)

Mθr(h(ε,θ) ;θ)

}
; otherwise, we reject the sample and repeat the process. We

illustrate this in Figure 1 and provide a summary of the method in Algorithm 1, where we consider
the output to be the (accepted) variable ε, instead of z.

The ability to simulate from r(z ; θ) by a reparameterization through a differentiable h(ε, θ) is not
needed for the rejection sampler to be valid. However, this is indeed the case for the rejection sampler
of many common distributions.

1.2 The Reparameterized Rejection Sampler in Variational Inference

We now use reparameterized rejection sampling to develop a novel Monte Carlo estimator of the
gradient of the ELBO. We first rewrite the ELBO in (1) as an expectation in terms of the transformed
variable ε,

L(θ) = Eq(z ;θ) [f(z)] +H[q(z ; θ)] = Eπ(ε ;θ) [f (h(ε, θ))] +H[q(z ; θ)]. (3)
In this expectation, π(ε ; θ) is the distribution of the accepted sample ε in Algorithm 1. We construct
it by marginalizing over the auxiliary uniform variable u,

π(ε ; θ) =

∫
π(ε, u ; θ)du =

∫
Mθs(ε)1

[
0 < u <

q (h(ε, θ) ; θ)

Mθr (h(ε, θ) ; θ)

]
du = s(ε)

q (h(ε, θ) ; θ)

r (h(ε, θ) ; θ)
,

(4)
where 1[x ∈ A] is the indicator function, and recall thatMθ is a constant used in the rejection sampler.
This can be seen by the algorithmic definition of the rejection sampler, where we propose values
ε ∼ s(ε) and u ∼ U [0, 1] until acceptance, i.e., until u < q(h(ε,θ) ;θ)

Mθr(h(ε,θ) ;θ)
.

We can now compute the gradient of Eq(z ;θ)[f(z)] based on Eq. 3,

∇θEq(z ;θ)[f(z)] = ∇θEπ(ε ;θ)[f(h(ε, θ))]

= Eπ(ε ;θ)[∇θf(h(ε, θ))]︸ ︷︷ ︸
=:grep

+Eπ(ε ;θ)
[
f(h(ε, θ))∇θ log

q(h(ε, θ) ; θ)

r(h(ε, θ) ; θ)

]
︸ ︷︷ ︸

=:gcor

, (5)

where we have used the log-derivative trick and rewritten the integrals as expectations with respect to
π(ε ; θ) (see Naesseth et al. [2016, Section 3] for all details.) We define grep as the reparameterization
term, which takes advantage of gradients with respect to the model and its latent variables; we define
gcor as a correction term that accounts for not using r(z ; θ) ≡ q(z ; θ).
Using (5), the gradient of the ELBO in (1) can be written as

∇θL(θ) = grep + gcor +∇θH[q(z ; θ)], (6)
and thus we can build an unbiased one-sample Monte Carlo estimator ĝ ≈ ∇θL(θ) as

ĝ := ĝrep + ĝcor +∇θH[q(z ; θ)],

ĝrep = ∇zf(z)
∣∣
z=h(ε,θ)

∇θh(ε, θ), ĝcor = f(h(ε, θ))∇θ log
q(h(ε, θ) ; θ)

r(h(ε, θ) ; θ)
,

(7)

where ε is a sample generated using Algorithm 1. (We can also generate more samples of ε and
average; however, one sample is enough in practice to ensure a reasonable gradient estimate.)

We now describe the full variational algorithm based on reparameterizing the rejection sampler. We
make use of Eq. 6 to obtain a Monte Carlo estimator of the gradient of the ELBO. We use this estimate
to take stochastic gradient steps. We use the step-size sequence ρn proposed by Kucukelbir et al.
[2016] (also used by Ruiz et al. [2016]), which combines RMSPROP [Tieleman and Hinton, 2012] and
Adagrad [Duchi et al., 2011]. We summarize the full method in Algorithm 2. We refer to our method
as RSVI.
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Algorithm 2 Rejection Sampling Variational Inference

Input: Data x, model p(x, z), variational family q(z ; θ)
Output: Variational parameters θ∗

1: repeat
2: Run Algorithm 1 for θn to obtain a sample ε
3: Estimate the gradient ĝn at θ = θn (Eq. 7)
4: Calculate the stepsize ρn
5: Update θn+1 = θn + ρnĝn

6: until convergence
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Figure 2: In the distribution on the transformed space ε for a gamma distribution we can see that
the rejection sampling-inspired transformation converges faster to a standard normal. Therefore it
is less dependent on the parameter α, which implies a smaller correction term. We compare the
transformation of RSVI (this paper) with the standardization procedure suggested in Ruiz et al. [2016]
(G-REP), for shape parameters α = {1, 2, 10}.

2 Experiments

In Figure 2 we show that the distribution π(ε ; θ) for the gamma rejection sampler converges to s(ε) (a
standard normal) as the shape parameter α increases. For large α, π(ε ; θ) ≈ s(ε) and the acceptance
probability of the rejection sampler approaches 1, which makes the correction term negligible.

In Figure 3a we study the variance of the stochastic gradient for a synthethic example for which we
can calculate the true gradient. RSVI achieves significantly lower variance compared to generalized
reparameterization (G-REP) [Ruiz et al., 2016]. We also show in Figure 3b that RSVI outperforms
other state of the art methods in terms of convergence speed, due to the reduced variance.
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(a) RSVI (this paper) achieves lower variance compared
to G-REP [Ruiz et al., 2016]. The estimated variance
is for a component of Dirichlet approximation to a
multinomial likelihood with uniform Dirichlet prior.
Optimal concentration (parameter value) is α = 2, and
B denotes shape augmentation steps (see Naesseth et al.
[2016, Section 5] for details).
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(b) RSVI (this paper) presents a significantly faster ini-
tial improvement of the ELBO as a function of wall-
clock time. The model is a sparse gamma DEF [Ran-
ganath et al., 2015], applied to the Olivetti faces dataset,
and we compare with ADVI [Kucukelbir et al., 2016],
BBVI [Ranganath et al., 2014], and G-REP.
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