
Inference & Introspection in Deep Generative Models
of Sparse Data

Rahul G. Krishnan
New York University
rahul@cs.nyu.edu

Matthew Hoffman
Adobe Research

mathoffm@adobe.com

Abstract

Deep generative models such as deep latent Gaussian models (DLGMs) are pow-
erful and popular density estimators. However, they have been applied almost
exclusively to dense data such as images; DLGMs are rarely applied to sparse,
high-dimensional integer data such as word counts or product ratings. One reason
is that the standard training procedures find poor local optima when applied to
such data. We propose two techniques that alleviate this problem, significantly
improving our ability to fit DLGMs to sparse, high-dimensional data. Having fit
these models, we are faced with another challenge: how to use and interpret the
representation that we have learned? To that end, we propose a method that extracts
distributed representations of features via a simple linearization of the model.

1 Introduction

Deep latent Gaussian models (DLGMs, a.k.a. variational autoencoders; Rezende et al. , 2014;
Kingma et al. , 2014) have led a resurgence in the use of deep generative models for density estimation.
DLGMs assume that observed vectors x are generated by applying a nonlinear transformation (defined
by a neural network with parameters θ) to a vector of Gaussian random variables z.

Learning in DLGMs proceeds by approximately maximizing the average marginal likelihood p(x) ≡∫
z
p(z)p(x|z)dz of the observations x. Computing the true marginal likelihood is intractable, so

we resort to variational expectation-maximization (Bishop, 2006), an approximation to maximum-
likelihood estimation. To learn the parameters θ of the generative model, the procedure needs to find
a distribution q(z|x) that approximates the posterior distribution p(z|x) of the latent vector z given
the observations x. In the past, such q distributions were fit using iterative optimization procedures
(e.g., Hoffman et al. , 2013). But Rezende et al. (2014) and Kingma et al. (2014) showed that q(z|x)
can be parameterized by a feedforward “inference network” with parameters φ, speeding up learning.
Embedded within this procedure, however, lies a potential problem: both the inference network and
the generative model are initialized randomly. Early on in learning, the inference network’s q(z|x)
distributions will be poor approximations to the true posterior p(z|x), and the gradients used to update
the parameters of the generative model will therefore be poor approximations to the gradients of
the true log-likelihood log p(x). Previous stochastic variational inference methods (Hoffman et al. ,
2013) had for every data-point, a set of variational parameters that were optimized within the inner
loop of learning. Here, we investigate blending the two methodologies for learning models of sparse
data. In particular, we use the parameters predicted by the inference network as an initialization and
optimize them further during learning. When modeling high-dimensional sparse data, we show that
updating the local variational parameters yields generative models with better held-out likelihood,
particularly for deeper generative models.

We consider a simple method to interpret what is being learned by generative models such as DLGMs
whose conditional probabilities are parameterized by deep neural networks. We use the Jacobian

AABI Workshop at the 29th Conference on Neural Information Processing Systems (NIPS 2016), Spain.

of the conditional distribution with respect to latent variables in the Bayesian network to form
embeddings (or Jacobian vectors) of the observations.

2 Background

Generative Model: We instantiate our graphical model where our observations are bag-of-words
documents. We observe a set of D word count vectors x1:D, where xdv denotes the number of times
that word index v ∈ {1, . . . , V } appears in document d. We assume we are given the total number of
words per document Nd ≡

∑
v xdv , and that x was generated via the following generative process:

zd ∼ N (0, I); γ(z) ≡ MLP(z; θ); µ(z) ≡ exp{γ(z)}∑
v exp{γ(z)v}

; xd ∼ Multinomial(µ(zd), Nd).

(1)

That is, we draw a Gaussian random vector, pass it through a multilayer perceptron (MLP) with
parameters θ, pass the resulting vector through the softmax (a.k.a. multinomial logistic) function, and
sample Nd times from the resulting distribution over the vocabulary.1

Variational Learning: We need to approximate the intractable posterior distribution p(z|x) during
learning. Using the well-known variational principle, we can obtain the lower bound on the log
marginal likelihood of the data (or L(x; θ, φ)). We leverage an inference network or recognition
network (Hinton et al. , 1995), a neural network which approximates the intractable posterior, during
learning. With a normal distribution as our variational approximation we have that qφ(z|x) ∼
N (µφ(x),Σφ(x)). µφ(x),Σφ(x) are functions of the observation x, and we denote by ψ(x) :=
{µφ(x),Σφ(x)} the local variational parameters predicted by the inference network.

3 Methodology

Inference with Global Information: The simplest way to incorporate global first order statistics
across the training data into the inferential process is to condition on tf-idf (Baeza-Yates et al. , 1999)
features instead of the raw-counts. tf-idf is one of the most widely used techniques in information
retrieval. The key idea behind it is to re-weight features in a manner that increases the influence of
rarer words while decreasing the influence of common words that appear in all documents. We define
the tf-idf-transformed word-count vector x̃d as

x̃dv ≡ xdv log D∑
d′ min{xd′v,1}

. (2)

After applying this tf-idf transform, the resulting vector x̃ is normalized by its L2 norm.

Optimizing Local Variational Parameters: The predictions of the inference network early in
optimization are suboptimal variational parameters used to derive gradients of the parameters of the
generative model. This induces noise and bias to the gradients used to update the parameters of the
generative model. To avoid these issues, we only use the local variational parameters ψ(x) predicted
by the inference network to initialize an iterative optimizer that maximizes the ELBO with respect to
ψ (we denote by M the number of optimization steps performed); we use the optimized variational
parameters ˆψ(x) to derive gradients for the generative model. We then train the inference network
using stochastic backpropagation and gradient descent, holding the parameters of the generative
model θ fixed. We refer the reader to Algorithm 1 in the supplementary material for an overview of
the learning algorithm.

Introspection: In DLGMs, the relationship between latent variables z and observations x cannot be
quickly read off of the parameters θ. But we can still ask what happens if we perturb z by some small
dz—this is simply the directional derivative ∂E[x|z]

∂z dz. We can interpret this Jacobian matrix in much
the same way we would a factor loading matrix (Spearman, 1904).

Jacobian Vectors: We evaluate the Jacobian matrix as: J (z)log = ∂ log µ(z)
∂z For any z, J (z)log ∈

RV×K where K is the latent dimension and V is the dimensionality of the observations. It is

1In keeping with common practice, we neglect the multinomial base measure term N !
x1!···xV !

, which amounts
to assuming that the words are observed in a particular order.

2

this matrix that we use to form embeddings. J (z) is a function of z leaving open the choice of
where to evaluate this function. The semantics of our generative model suggest a natural choice:
J log

mean := Ep(z)[J (z)log]. This set of embeddings captures the variation in the output distribution with
respect to the latent state across the prior distribution of the generative model. For implementations of
generative models in frameworks that support automatic differentiation (Theano Development Team,
2016), J (z) is readily available and we estimate J log

mean via Monte-Carlo sampling from the prior.

4 Related Work

Learning in Deep Generative Models: For DLGMs, Hjelm et al. (2016) also consider the optimization
of the local variational parameters, though their exposition focuses on deriving an importance-
sampling-based bound to use during learning in deep generative models with discrete latent variables.
Their experimental results suggest the procedure does not improve performance much on the binarized
MNIST dataset. This is consistent with our experience—we found that our secondary optimization
procedure helped more when modeling sparse, high-dimensional count data.

Introspection: In the context of discriminative modeling, (Erhan et al. , 2009) use gradient informa-
tion to study the patterns with which neurons are activated in a deep neural networks while (Wang
et al. , 2016) use the spectra of the Jacobian to study the complexity of the functions learned by neural
networks. Miao et al. (2016) learn a shallow log-linear model on text data and obtain embeddings
for words from the weight matrix that parameterize their generative model.

5 Evaluation

We study the effect of further optimization of the variational parameters and inference with tf-idf
features on the two datasets of varying size: the smaller 20Newsgroups (Lang, 2008) and the larger
RCV2 (Lewis et al. , 2004) dataset.

Training Procedure: On all datasets, we train shallow log-linear models (γ(z) = Wz + b) and
deeper three-layer DLGMs (γ(z) = MLP(z; θ)). We vary the number of secondary optimization steps
M = 1, 200 to study the effect of optimization on ψ(x) with ADAM (Kingma & Ba, 2015). We use
a mini-batch size of 500, a learning rate of 0.01 for ψ(x) and 0.0008 for θ, φ. The inference network
was fixed to a two-layer MLP whose intermediate hidden layer h(x) was used to parameterize the
mean and diagonal log-variance µ(x), log Σ(x). To evaluate the quality of the learned generative
models, we report an upper bound on perplexity (Mnih & Gregor, 2014). The notation 3-M100-tfidf
indicates a model where the MLP parameterizing γ(z) has three hidden layers, the local variational
parameters are updated 100 times before an update of θ and tf-idf features were used in inference.

Improving Learning: Table 1 depicts our results on 20newsgroups and RCV2. On the smaller
dataset, we find that the deeper models overfit quickly and are outperformed by shallow generative
models. On the larger datasets, the deeper models’ capacity is more readily utilized yielding better
generalization. The use of tf-idf features helps learning on smaller datasets though on large datasets,
the benefits are smaller when we also optimize ψ(x). Finally, the optimization of the local variational
parameters appears to help most on the larger datasets. To investigate how this occurs, we plot the
held-out likelihood versus epochs, on models trained on the larger RCV2 (Figure 1a) and Wikipedia
(Figure 1b) datasets. In the presence of large amounts of data, the larger deep generative models
appear to converge to better solutions through the additional optimization of ψ(x).

Jacobian Vectors: The Jacobian matrix can be used to visualize how much of the latent dimension
is being utilized by the generative models learned using the inferential procedure we propose since
it precisely encodes how sensitive the outputs are with respect to the inputs. The singular value
spectrum of this matrix therefore, directly captures the amount of variance in the data explained
by the latent space. In Figure 1c, 1d, we see that for the deeper models continuing to optimize
the variational parameters allows us to learn models that use many more of the available latent
dimensions. This suggests that, when fit to text data, DLGMs may be particularly susceptible to the
overpruning phenomenon noted by Burda et al. (2015). In Figure 1, the lower held-out perplexity and
the increased utilization of the latent space suggest that the continued optimization of the variational
parameters yields more powerful generative models.

3

Table 1: Test Perplexity: Left: Baselines Results on the 20newsgroups and RCV1-v2 dataset Legend: LDA
(Blei et al. , 2003), Replicated Softmax (RSM) (Hinton & Salakhutdinov, 2009), Sigmoid Belief Networks
(SBN) and Deep Autoregressive Networks (DARN) (Mnih & Gregor, 2014), Neural Variational Document
Model (Miao et al. , 2016). K denotes the latent dimension in our notation. Right: DLGMs on text data with
K = 100. We vary the features presented to the inference network qφ(z|x) during learning between: normalized
count vectors (x∑V

i=1 xi
, denoted “norm”) and normalized tf-idf (denoted “tf-idf”) features.

Model K 20News RCV1-v2
LDA 50 1091 1437
LDA 200 1058 1142
RSM 50 953 988
SBN 50 909 784

fDARN 50 917 724
fDARN 200 — 598
NVDM 50 836 563
NVDM 200 852 550

DLGM 20News RCV1-v2
M1 M100 M1 M11

1-M1-norm 964 816 498 479
1-M100-norm 1182 831 485 453

3-M1-norm 1040 866 408 360
3-M100-norm 1341 894 378 329

1-M1-tfidf 895 785 475 453
1-M100-tfidf 917 792 480 451

3-M1-tfidf 1027 852 391 346
3-M100-tfidf 1029 833 377 327

0 50 100 150 200
Epochs

300

400

500

600

700

800

U
p
p
e
r

B
o
u
n
d
 o

n
 H

e
ld

-o
u
t

P
e
rp

le
x
it

y

1-M1

3-M1

3-M100

1-M100

(a) RCV2

0 5 10 15 20 25 30
Epochs

1000

1200

1400

1600

1800

2000

2200

U
p
p
e
r

B
o
u
n
d
 o

n
 H

e
ld

-o
u
t

P
e
rp

le
x
it

y

3-M1

1-M1

3-M100

(b) Wikipedia

0 20 40 60 80 100
Number of singular values

2
1
0
1
2
3
4
5
6
7

Lo
g

 S
in

g
u
la

r
V

a
lu

e
s

o
f
Jl
og m
ea
n

3-M1

3-M100

1-M1

1-M100

(c) RCV2

0 20 40 60 80 100
Number of singular values

2
1
0
1
2
3
4
5
6

Lo
g

 S
in

g
u
la

r
V

a
lu

e
s

o
f
Jl
og m
ea
n

3-M1

3-M100

1-M1

1-M100

(d) Wikipedia

Figure 1: Mechanics of Learning: Validation Perplexity and Log-singular Values of J log
mean: Best viewed

in color. For the RCV2 and Wikipedia (large) datasets, we visualize the validation perplexity as a function of
epochs. The solid lines indicate the validation perplexity for M = 1 and the dotted lines the indicate M = 100.
The x-axis is not directly comparable on running times since larger values of M take longer during training. We
find that learning with M = 100 takes approximately 15 times as long per mini-batch of size 500 on the text
datasets. Figure 1c, 1d depict the sorted log singular values of J log

mean.

Table 2: Word Embeddings (Nearest Neighbors): We visualize nearest neighbors of word embeddings. We
exclude plurals of the query and other words in the neighborhood.

Query Neighborhood
intelligence espionage, secrecy, interrogation, counterterrorism
zen dharma, buddhism, buddhas, meditation,yoga
artificial artificially, molecules, synthetic, soluble
military civilian, armys, commanders, infantry

We investigate how the Jacobian matrix may be used for model introspection by studying the
qualitative properties of J log

mean on DLGMs (of type “3-M100-tfidf”) trained on Wikipedia. We form a
Monte Carlo estimate of J log

mean using 400 samples. The cosine distance is used to define neighbors of
words in the embedding space of the Jacobian. In Table 2, we visualize some of the nearest neighbors
of words using J log

mean obtained from models trained on the Wikipedia dataset. The neighbors are
semantically sensible indicating that the method holds promise to derive distributed representations
from trained variational auto-encoders.

4

References
Baeza-Yates, Ricardo, Ribeiro-Neto, Berthier, et al. . 1999. Modern information retrieval. Vol. 463. ACM press

New York.

Bishop, C. 2006. Pattern Recognition and Machine Learning. Springer New York.

Blei, David M, Ng, Andrew Y, & Jordan, Michael I. 2003. Latent dirichlet allocation. JMLR.

Burda, Yuri, Grosse, Roger, & Salakhutdinov, Ruslan. 2015. Importance weighted autoencoders. In: ICLR.

Erhan, Dumitru, Bengio, Yoshua, Courville, Aaron, & Vincent, Pascal. 2009. Visualizing higher-layer features
of a deep network.

Hinton, Geoffrey E, & Salakhutdinov, Ruslan R. 2009. Replicated softmax: an undirected topic model. In:
NIPS.

Hinton, Geoffrey E, Dayan, Peter, Frey, Brendan J, & Neal, Radford M. 1995. The” wake-sleep” algorithm for
unsupervised neural networks. Science.

Hjelm, R Devon, Cho, Kyunghyun, Chung, Junyoung, Salakhutdinov, Russ, Calhoun, Vince, & Jojic, Nebojsa.
2016. Iterative Refinement of Approximate Posterior for Training Directed Belief Networks. In: NIPS.

Hoffman, Matthew D, Blei, David M, Wang, Chong, & Paisley, John William. 2013. Stochastic variational
inference. JMLR.

Kingma, Diederik, & Ba, Jimmy. 2015. Adam: A method for stochastic optimization. In: ICLR.

Kingma, Diederik P, Mohamed, Shakir, Rezende, Danilo Jimenez, & Welling, Max. 2014. Semi-supervised
learning with deep generative models. In: NIPS.

Lang, Ken. 2008. The 20 newsgroups data set.

Lewis, David D, Yang, Yiming, Rose, Tony G, & Li, Fan. 2004. RCV1: A new benchmark collection for text
categorization research. JMLR.

Miao, Yishu, Yu, Lei, & Blunsom, Phil. 2016. Neural Variational Inference for Text Processing. In: ICML.

Mnih, Andriy, & Gregor, Karol. 2014. Neural variational inference and learning in belief networks. In: ICML.

Rezende, Danilo Jimenez, Mohamed, Shakir, & Wierstra, Daan. 2014. Stochastic backpropagation and approxi-
mate inference in deep generative models. In: ICML.

Spearman, Charles. 1904. ” General Intelligence,” objectively determined and measured. The American Journal
of Psychology.

Theano Development Team. 2016. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints.

Wang, Shengjie, Plilipose, Matthai, Richardson, COM Matthew, Geras, COM Krzysztof, Urban, Gregor, &
Aslan, EDU Ozlem. 2016. Analysis of Deep Neural Networks with the Extended Data Jacobian Matrix. In:
ICML.

5

Supplementary Material
Algorithm 1 presents the learning algorithm outlined in the main paper.

Algorithm 1 Pseudocode for Learning: We evaluate expectations in L(x) using a single sample from the
variational distribution and aggregate gradients across mini-batches. M = 1 corresponds to performing no
additional optimization to the variational parameters We update θ, ψ(x), φ using stochastic gradient descent
with adaptive learning rates ηθ, ηψ(x), ηφ obtained via ADAM (Kingma & Ba, 2015)

Inputs: Dataset D := [x1, . . . , xD], Inference Model: qφ(z|x), Generative Model: pθ(x|z), p(z)
while notConverged() do

1. Sample datapoint: x ∼ D
2. Estimate local variational parameters ψ(x)1 using qφ(z|x)

3. Estimate ψ(x)M ≈ ˆψ(x) = arg maxψ(x) L(x; θ;ψ(x)) via SGD as:
m = 1, . . . ,M , ψ(x)m+1 = ψ(x)m + ηψ(x)

∂L(x;θ,ψ(x)m)
∂ψ(x)m

4. Update θ as: θ ← θ + ηθ∇θL(x; θ, ψ(x)M)
5. Update φ as: φ← φ+ ηφ∇φL(x; θ, ψ(x)1)

end while

6

	Introduction
	Background
	Methodology
	Related Work
	Evaluation

