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Abstract

We investigate the problem of approximate inference using Expectation Propagation
(EP) for large systems under some statistical assumptions. Our approach tries
to overcome the numerical bottleneck of EP caused by the inversion of large
matrices. Assuming that the measurement matrices are realizations of specific
types of random matrix ensembles – called invariant ensembles – the EP cavity
variances have an asymptotic self-averaging property. They can be pre-computed
using specific generating functions which do not require matrix inversions. We
demonstrate the performance of our approach on a signal recovery problem of
compressed sensing and compare with standard EP

1 Introduction
Expectation propagation (EP) [1, 2] is a typically highly accurate method for approximate Bayesian
inference. But, the advantage of EP – which takes dependencies between variables into account –
over other methods which are based on simpler approximations with factorizing densities becomes a
problem when the number of random variables is large. This stems from the fact that EP requires
frequent matrix inversions related to the update of variance parameters, called cavity variances.

We show that under certain statistical assumptions on the measurement matrix, the cavity variances
computed by EP become self-averaging and can be computed without costly inversions when the
matrix dimensions, say N ×K, grow large with the aspect ratio α = N/K fixed. This self-averaging
property reduces the computational complexity of EP per iteration from O(N3) to O(N2). In fact,
our ansatz extends the (generalized) approximate message passing technique [3, 4] – which assumes
zero mean iid entries of the measurement matrix – to general invariant matrix ensembles, details are
provided in [5]. We note that we are not concerned with specific iterative algorithms that solve the
EP fixed-point equations. Instead, we focus our analysis on the properties of EP fixed points.

2 EP Approximation and its Random Matrix Treatment
We consider the problem of approximate Bayesian inference for a general class of observation models
where the latent vector x to be inferred has a posterior probability density function (pdf) given by
f(x|y,H) ∝ f(x)f(y|Hx). Here H is an N ×K dimensional matrix, f(x) is a prior pdf and
f(y|z) is a conditional pdf of the output vector y given z = Hx. These pdfs are both separable i.e.
f(x) =

∏
k fk(xk) and f(y|z) =

∏
n fn(yn|zn). For a Gaussian f(x), this class of models covers

e.g. many Gaussian process inference models. But we are also interested in more general cases,
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where the factors of these pdfs are non-Gaussian. Such models appear naturally in signal recovery
problems, where a signal described by a vector x is linearly coupled as z = Hx and then passed
through a channel of the conditional pdf f(y|z). In fact, it turns out useful to introduceHx as an
auxiliary latent vector z and study the joint posterior of the latent vector s , (x, z):

f(s|y,H) ∝ f(x)f(y|z)δ(z −Hx). (1)

EP approximates (1) by a Gaussian pdf for which the typically non-Gaussian factor f(s) ,
f(x)f(y|z) with f(s) =

∏
i fi(si) is replaced by Gaussian term as q(s) ∝ e− 1

2s
†Λs+γ†sδ(z−Hx)

where Λ is diagonal. The parameters γ and Λ are computed in an iterative way such that the first two
marginal moments of q(s) agree with those of the tilted distributions which are defined by replacing
a single Gaussian factor by a non-Gaussian one and integrating out the remaining variables

q̃i(si) ∝ fi(si)
∫
q(s)e

1
2 Λiis

2
i−γisi

∏
j 6=i

dsj ∝ fi(si) exp

(
−1

2

Λ

iis
2
i + ρisi

)
. (2)

From an algorithmic point of view, the most expensive operations required in EP are related to the
computation of the cavity variances { Λ

ii} in terms of Λ. Here and in the following we consider the

diagonal matrices Λ and

Λ

to be of the forms
(

Λx 0
0 Λz

)
and

( Λ

x 0
0

Λ

z

)
, respectively. Let χi

be the variance of q̃i(si). Then, the Gaussian integrations in (2) yield the representation

χi =
1

Λii +

Λ

ii
=

{
[(Λx +H†ΛzH)−1]ii Λii = [Λx]ii
[H(Λx +H†ΛzH)−1H†]jj Λii = [Λz]jj

. (3)

This requires costly matrix inversions in the iterations of the algorithm for large K and N . We will
use the fact that the equations (3) are obtained as the stationary points of the function of Λ

CH(Λ) = ln |Λx +H†ΛzH| − ln |Λ +

Λ|. (4)
We will derive a large-system expression for the first summand in (4) which depends only on certain
random matrix transforms that can be pre-computed before iterating the EP algorithm.

The “everything contributes identically” condition and Haar Bases

Essentially, our self-averaging EP ansatz requires that the contributions of all latent variables to the
data are statistically identical. Specifically, we constrain (1) to reflect the fact that it does not contain
preferred entries in x and z. This is fulfilled if the following holds (see [5, Section II], for the details)

(i) fk(x) = fl(x) for all k 6= l and fn(y|z) = fm(y|z) for all n 6= m;
(ii) for random permutation matrices U and V independent ofH ,H has the same probability

distribution as UHV , i.e. H ∼ UHV .

Of course it is not clear how well the condition of “everything contributes identically” is fulfilled
in a concrete application, but it should be noted that this assumption is also inherent in the EP
approximation itself. EP approximates the so-called cavity fields by Gaussians, i.e. it implicitly
assumes a central limit theorem to hold. This is again assuming the same kind of “everything
contributes identically”. Hence, we expect that in the cases where EP works well the self-averaging
assumption will be justified.

Condition (ii) is somewhat less intuitive, and mathematically not convenient to work with in general.
In the sequel, we present a convenient random matrix ensemble for H that fulfills (ii). We start
with the singular value decompositionH = LSR where L andR are orthogonal matrices whose
columns are the left and right singular vectors of H , respectively, and the diagonal entries of S
are the singular values of H . Condition (ii) holds if (presumably, if, and only if) L, S and R are
independent and L andR are invariant under multiplication with independent random permutation
matrices, e.g. L ∼ UL. This implies that “There are no preferred left or right singular vectors.” Put
simply “There is no preferred basis of left and right singular vectors.” Specifically, the orthogonal
matrices L and R are invariant under multiplication with any independent orthogonal matrix, i.e.
they are Haar matrices [6]. In summary, we assume that L, S andR are independent and L andR
are Haar matrices. In other words,H ∼ UHV for any independent orthogonal matrices U and V –
for short we say thatH is invariant from left and right. In general, we expect that the analysis with
Haar bases can provide good approximations when the contributions of individual latent variables to
the observation model are statistically identical.
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3 Self-Averaging Cavity Variances

Before presenting the main theoretical result we first introduce some preliminary notations and
definitions: For a vector u of sizeN , we define 〈u〉 =

∑
i ui/N . For anN×N matrixX = X†, we

define its normalized trace as Tr(X) , tr(X)/N and its asymptotic limit φ(X) , limN→∞Tr(X).
We denote the R- and S-transforms (of free probability theory [7]) of the empirical eigenvalue
distributions ofX by RN

X and SNX , respectively. IfX has a limiting eigenvalue distribution (LED)
(almost surely) when N →∞, we denote the R- and S-transforms of the LED ofX by RX and SX ,
respectively. Basically, these transforms are scalar-valued functions, for the details see [5, Section IV].

ASSUMPTION 1 Let H be invariant from left and right. Furthermore, as N,K → ∞ with the
fixed ratio α , N/K let the eigenvalue distribution of the matrices Λx, Λz andH†H converge to
compactly supported LEDs, the LED of Λz have its support in [0,∞) andH have uniformly bounded
spectral norm. Moreover, let (Λx +H†ΛzH) be positive definite and φ(Λx) < ∞, φ(Λz) < ∞
and φ(Λx +H†ΛzH)−1 < φ(H†ΛzH)−1, where by convention φ(X−1) =∞ ifX is singular.

THEOREM 1 Let Assumption 1 hold. Then, for sufficiently large N,K there exist positive quantities
χa, va and λa for a ∈ {x, z} such that ln |Λx +H†ΛzH| can be decomposed as

ln |Λx + vxI|+ ln |Λz + vzI|+ ln |λxI + λzH
†H|+K lnχx +N lnχz + ε (5)

where ε = O(1) is a bounded function of N . The quantities in (5) are uniquely characterized by the
implicit equations

vx = λzRK
H†H(−λzχx), vz = λxSNHH†(−λzχz) (6)

where χa = Tr(Λa + vaI)−1 = (λa + va)−1 for a ∈ {x, z}. In particular, we have the asymptotic
approximations

vx ' λzRH†H(−λzχx), vz ' λxSH†H(−λzχz). (7)
Here, for sequences (an), (bn), an ' bn implies an−bn → 0 as n→∞. Proof: see [5, Appendix B].

To simplify the cavity variance equations (3) for large systems we characterize the cost function (4)
by using Theorem 1, and obtain for a ∈ {x, z} that (see, [5, Eq.(47)])

1

[Λa]ii + [

Λ

a]ii
=
∂ ln |Λx +H†ΛzH|

∂[Λa]ii
(8)

=
1

[Λa]ii + va
+

∂ε

∂[Λa]ii
. (9)

Here, the impact of asymptotic correction terms ∂ε/∂[Λa]ii can be neglected: Firstly, one can
show that

∑
i ∂ε/∂[Λa]ii = O(1). Then, under the “everything contributes identically” condition

it makes sense to assume that there is no dominant individual term in the sum. This implies that
∂ε/∂[Λa]ii = O(1/N). Thereby, we conclude that

Λ

a ' vaI for a ∈ {x, z}. This means that the
diagonal elements of

Λ

a are asymptotically self-averaging.

Let the vectors χx and χz be the variances of the pdfs q̃(x) =
∏
k q̃k(xk) and q̃(z) =

∏
n q̃n(zn),

respectively, see (2). Then, we have χa ' 〈χa〉 for a ∈ {x, z} with χa given in (6). Thereby, we
write the fixed-point equations for the cavity variances

Λ

a = vaI as

〈χa〉 =
1

λa + va
=

{
(λx + λzRH†H(−λz〈χx〉))−1 a = x

(λz + λxSHH†(−λz〈χz〉))−1 a = z
. (10)

When the analytical expression of either the R- or S-transform is known, while the other is unknown,
we can express the cavity variances as a function of the known transform, see [5, Subsection V.A]. It
might be the case that the analytical expressions of both of the transforms are unknown. In such cases,
the simplest approach would be to use the R-transform RK

H†H
and S-transform SN

HH† as introduced
in (6). Using the definitions of the transforms, this leads to the fixed-point equations

〈χa〉 =
1

λa + va
=

{
Tr(λxI + λzH

†H)−1 a = x

Tr(H(λxI + λzH
†H)−1H†) a = z

. (11)

We can iteratively solve these fixed-point equations without the need for matrix inversion. The
singular values ofH , which are required in the iterations, are pre-computed.
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Figure 1: (a): Empirical cumulative distribution function of the cavity variances. The dimensions of H are
K/3×K, ρ = 0.1 and τ = 1. Blue curves are for K = 1200 and red curves are for K = 9600. The quantity
vx is obtained from the stable solution of self-averaging EP. (b): Mean-square-error of EP and self-averaging
EP (SAEP) versus number of iterations: ηx(t) denotes the estimate of x computed by an algorithm at iteration
number t, the size ofH is α1200× 1200, ρ = 0.1 and τ = 1. The reported figures are empirical averages over
100 and 1000 trials for α ∈ {1/3, 1/2} and α = 2/3, respectively. C.I. denotes the confidence interval in dB.

4 Numerical Results

To illustrate the self-averaging EP ansatz we consider a signal recovery problem from one-bit
compressed sensing, see [8] and the references therein. The signal model reads y = sign(Hx) with
x having entries drawn independently from a standard Bernoulli-Gaussian. Specifically, the prior
pdf of x is of the spike and slab form f(x) = (1− ρ)δ(x) + ρN(x|0, τI). Moreover, we consider
the following matrix ensemble: the rows ofH are drawn from a randomly permuted discrete cosine
transform (DCT) matrix. Specifically, H = P (P πΨP †π) where P ∈ {0, 1}N×K has ones on the
diagonal and zeros elsewhere, P π is a K ×K permutation matrix associated with the permutation
π which is drawn uniformly from the set of permutations (1, · · · ,K) → (1, · · · ,K) and Ψ is the
K ×K DCT matrix. Note that this matrix ensemble is classical in the context of compressed sensing
as signals are typically sparse in the DCT domain.

We refer to [5] for the details on the EP and self-averaging EP (fixed-point) algorithms that we
used. The only difference between these algorithms is that the EP algorithm solves the fixed-point
equations (3) while self-averaging EP algorithm solves (10). Therefore, the former algorithm has
O(N3) complexity (per iterations) and the latter has O(N2) complexity. Figure 1.a illustrates the
convergence of the empirical distribution function of the cavity variances {[ Λ

x]ii}, i.e. F Λ

x(x) =
1
K
|{v ∈ {[

Λ

x]ii : ∀i} : v ≤ x}|, as the dimensions of the system increase. The numerical results show
that

Λ

x − vxI → 0. The distribution of {[ Λ

z]ii} shows a similar convergence behavior, see [5,
Figure. 1]. In Figure 1.b, we compare the performance of EP and self-averaging EP through their
mean square error in estimating the signal x. The results show that both algorithms provide the same
performance.

5 Summary and Outlook

EP applied to large systems requires tremendous computational complexity. We have introduced a
theoretical framework – called self-averaging EP – that transforms the large-system challenge into an
opportunity provided the underlying measurement matrix is drawn from an invariant ensemble. We
have restricted ourselves to cases where the random matrix ensemble is known explicitly. This is
typically the case for applications in compressed sensing. But we expect that self-averaging EP can be
applied to larger class of models in which latent variables identically contribute in a statistical sense
to the data. It would then be important to have estimator of the R-transform (and/or S-transform) that
are computationally more efficient than the simple one in (11). These could e.g. be based on some
spectral moments Tr((H†H)k) for some k = 1, · · · ,M [9]. It would also be interesting to apply
methods of random matrix theory to derive convergent algorithms for solving the self-averaging EP
fixed-points [10].
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